Collect. Czech. Chem. Commun.
2005, 70, 550-558
https://doi.org/10.1135/cccc20050550
Electronegativity and Average Local Ionization Energy
Peter Politzer*, Jane S. Murray and M. Edward Grice
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, U.S.A.
References
1. J. Am. Chem. Soc. 1932, 54, 3570.
< L.: https://doi.org/10.1021/ja01348a011>
2. Proc. Natl. Acad. Sci. U.S.A. 1932, 18, 414.
< L., Yost D. M.: https://doi.org/10.1073/pnas.18.6.414>
3. Pauling L.: The Nature of the Chemical Bond, 2nd ed., Cornell University Press, Ithaca (NY) 1942.
4. Allen L. C. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer, Ed.), Vol. 2, p. 835. Wiley, New York 1998.
5. Hinze J. in: Pauling’s Legacy: Modern Modelling of the Chemical Bond (Z. B. Maksic and W. J. Orville-Thomas, Eds), Chap. 7. Elsevier, Amsterdam 1999.
6. J. Chem. Phys. 1978, 68, 3801.
< R. G., Donnelly R. A., Levy M., Palke W. E.: https://doi.org/10.1063/1.436185>
7. J. Chem. Phys. 1978, 69, 4431.
< R. A., Parr R. G.: https://doi.org/10.1063/1.436433>
8. J. Chem. Phys. 1979, 71, 4218.
< P., Weinstein H.: https://doi.org/10.1063/1.438228>
9. Science 1951, 114, 670.
< R. T.: https://doi.org/10.1126/science.114.2973.670>
10. J. Am. Chem. Soc. 1952, 74, 272.
< R. T.: https://doi.org/10.1021/ja01121a522>
11. Parr R. G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York 1989.
12. J. Am. Chem. Soc. 1989, 111, 9003.
< L. C.: https://doi.org/10.1021/ja00207a003>
13. J. Am. Chem. Soc. 1961, 83, 3547.
< R. P., Margrave J. L.: https://doi.org/10.1021/ja01478a001>
14a. J. Chem. Phys. 1934, 2, 782.
< R. S.: https://doi.org/10.1063/1.1749394>
14b. J. Chem. Phys. 1935, 3, 573.
< R. S.: https://doi.org/10.1063/1.1749731>
15. Phys. Rev. D: Part. Fields 1987, 36, 1559.
< J. F., Huheey J. E.: https://doi.org/10.1103/PhysRevD.36.1559>
16. Phys. Rev. D: Part. Fields 1987, 36, 1562.
< K. S., Zweig G.: https://doi.org/10.1103/PhysRevD.36.1562>
17. Acc. Chem. Res. 1990, 23, 1.
< R. G.: https://doi.org/10.1021/ar00169a001>
18. Coord. Chem. Rev. 1990, 100, 403.
< R. G.: https://doi.org/10.1016/0010-8545(90)85016-L>
19. Acc. Chem. Res. 1990, 23, 175.
< L. C.: https://doi.org/10.1021/ar00174a001>
20. Chem. Rev. 1955, 55, 745.
< H. O., Skinner H. A.: https://doi.org/10.1021/cr50004a005>
21. Adv. Chem. Phys. 1967, 13, 55.
< R.: https://doi.org/10.1002/9780470140154.ch4>
22. Struct. Bond. 1987, 66, 1.
< J.: https://doi.org/10.1007/BFb0029834>
23. J. Phys. Chem. 1994, 98, 6699.
< G. D.: https://doi.org/10.1021/j100078a009>
24. Angew. Chem., Int. Ed. Engl. 1996, 35, 150.
< D., Hinze J.: https://doi.org/10.1002/anie.199601501>
25. J. Mol. Struct. (THEOCHEM) 2001, 549, 69.
< P., Grice M. E., Murray J. S.: https://doi.org/10.1016/S0166-1280(01)00498-5>
26. Phys. Lett. A 1980, 78, 242.
< N. H., Bader R. F. W.: https://doi.org/10.1016/0375-9601(80)90081-X>
27. J. Phys. Chem. 1982, 86, 2262.
< N. H.: https://doi.org/10.1021/j100209a022>
28. Int. J. Quantum Chem. 1994, 51, 569.
< K., Ptak W. S., Kolezynski A., Mrugalski J.: https://doi.org/10.1002/qua.560510621>
29. J. Electron Spectrosc. Relat. Phenom. 1988, 46, 173.
< E., Currie J. F.: https://doi.org/10.1016/0368-2048(88)80015-X>
30. J. Am. Chem. Soc. 2000, 122, 2780.
< J. B., Meek T. L., Allen L. C.: https://doi.org/10.1021/ja992866e>
31. J. Am. Chem. Soc. 2000, 122, 5132.
< J. B., Meek T. L., Knight E. T., Capitani J. F., Allen L. C.: https://doi.org/10.1021/ja9928677>
32. Chem. Phys. Lett. 1973, 20, 309.
< P., Daiker K. C.: https://doi.org/10.1016/0009-2614(73)80056-9>
33. Chimia 1971, 25, 213.
C. K.:
34. Can. J. Chem. 1990, 68, 1440.
< P., Murray J. S., Brinck T., Politzer P.: https://doi.org/10.1139/v90-220>
35. Physica 1933, 1, 104.
< T. A.: https://doi.org/10.1016/S0031-8914(34)90011-2>
36. Adv. Chem. Phys. 1965, 9, 321.
< R. K.: https://doi.org/10.1002/9780470143551.ch4>
37. J. Mol. Struct. (THEOCHEM) 1992, 255, 271.
< J. S., Brinck T., Politzer P.: https://doi.org/10.1016/0166-1280(92)85015-D>
38. J. Mol. Struct. (THEOCHEM) 1992, 256, 29.
< J. S., Brinck T., Grice M. E., Politzer P.: https://doi.org/10.1016/0166-1280(92)87156-T>
39. Int. J. Quantum Chem. 1998, 69, 607.
< P., Abu-Awwad F., Murray J. S.: https://doi.org/10.1002/(SICI)1097-461X(1998)69:4<607::AID-QUA18>3.0.CO;2-W>
40. Int. J. Quantum Chem. 2002, 88, 19.
< P., Murray J. S., Concha M. C.: https://doi.org/10.1002/qua.10109>
41. J. Org. Chem. 1991, 56, 5012.
< T., Murray J. S., Politzer P.: https://doi.org/10.1021/jo00017a006>
42. Int. J. Quantum Chem. 1993, 48, 73.
< T., Murray J. S., Politzer P.: https://doi.org/10.1002/qua.560480202>
43. J. Am. Chem. Soc. 1987, 109, 7968.
< R. F. W., Carroll M. T., Cheeseman J. R., Chang C.: https://doi.org/10.1021/ja00260a006>
44. J. Chem. Phys. 1991, 95, 6699.
< P., Murray J. S., Grice M. E., Brinck T., Ranganathan S.: https://doi.org/10.1063/1.461539>
45. Phys. Rev. A: At., Mol., Opt. Phys. 1996, 53, 3117.
< A., Parr R. G., Liu S.: https://doi.org/10.1103/PhysRevA.53.3117>
46. Mol. Phys. 1997, 91, 873.
< T., Nagy A.: https://doi.org/10.1080/00268979709482777>
47. Int. J. Quantum Chem., Quantum Chem. Symp. 1990, 24, 645.
< J. S., Seminario J. M., Politzer P., Sjoberg P.: https://doi.org/10.1002/qua.560382462>
48. Int. J. Quantum Chem. 2004, 96, 394.
< P., Murray J. S., Politzer P.: https://doi.org/10.1002/qua.10717>
49. Murray J. S., Politzer P. in: Theoretical Organic Chemistry (C. Parkanyi, Ed.), Chap. 7. Elsevier, Amsterdam 1998.
50. Phys. Rev. A: At., Mol., Opt. Phys. 1975, 12, 2288.
< G., Prat R. F.: https://doi.org/10.1103/PhysRevA.12.2288>
51. Clementi E.: Tables of Atomic Functions. IBM, San Jose (CA) 1965.
52. Bulat F., Murray J. S.: Unpublished results.
53. J. Mol. Model. 2003, 9, 342.
< B., Martin B., Horn A. H. C., Clark T.: https://doi.org/10.1007/s00894-003-0153-x>