Collect. Czech. Chem. Commun.
2005, 70, 771-796
https://doi.org/10.1135/cccc20050771
Representation Theory and Wigner-Racah Algebra of the SU(2) Group in a Noncanonical Basis
Maurice R. Kibler
Institut de Physique Nucléaire de Lyon, IN2P3-CNRS et Université Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
References
1a. Int. J. Quantum Chem. 1977, 12, 875.
< J., Paldus J.: https://doi.org/10.1002/qua.560120510>
1b. Phys. Scr. 1980, 21, 364.
< J., Adams B. G., Paldus J.: https://doi.org/10.1088/0031-8949/21/3-4/021>
2a. Lett. Nuovo Cimento 1983, 37, 225.
< M., Négadi T.: https://doi.org/10.1007/BF02751180>
2b. J. Phys. A: Math. Gen. 1983, 16, 4265.
< M., Négadi T.: https://doi.org/10.1088/0305-4470/16/18/027>
2c. Phys. Rev. A: At., Mol., Opt. Phys. 1984, 29, 2891.
< M., Négadi T.: https://doi.org/10.1103/PhysRevA.29.2891>
2d. J. Mol. Phys. 2004, 102, 1221.
< M. R.: https://doi.org/10.1080/00268970410001728690>
3a. Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 50.
< J., Čížek J., Shavitt I.: https://doi.org/10.1103/PhysRevA.5.50>
3b. J. Chem. Phys. 1974, 57, 638.
< J.: https://doi.org/10.1063/1.1678296>
3c. J. Chem. Phys. 1974, 61, 5321.
< J.: https://doi.org/10.1063/1.1681883>
3d. Int. J. Quantum Chem., Quantum Chem. Symp. 1975, 9, 165.
< J.: https://doi.org/10.1002/qua.560090823>
3e. Adv. Quantum Chem. 1975, 9, 105.
< J., Čížek J.: https://doi.org/10.1016/S0065-3276(08)60040-4>
3f. Phys. Rev. A: At., Mol., Opt. Phys. 1976, 14, 1620.
< J.: https://doi.org/10.1103/PhysRevA.14.1620>
3g. J. Chem. Phys. 1977, 67, 303.
< J.: https://doi.org/10.1063/1.434526>
3h. Int. J. Quantum Chem. 1977, 11, 813.
< J., Adams B. G., Čížek J.: https://doi.org/10.1002/qua.560110511>
3i. Int. J. Quantum Chem. 1977, 11, 849.
< B. G., Paldus J., Čížek J.: https://doi.org/10.1002/qua.560110512>
3j. Phys. Rev. A: At., Mol., Opt. Phys. 1978, 17, 805.
< J., Čížek J., Saute M., Laforgue A.: https://doi.org/10.1103/PhysRevA.17.805>
3k. Int. J. Quantum Chem. 1979, 16, 1307.
< P. E. S., Paldus J.: https://doi.org/10.1002/qua.560160610>
3l. Int. J. Quantum Chem. 1979, 16, 1321.
< J., Wormer P. E. S.: https://doi.org/10.1002/qua.560160611>
3m. Int. J. Quantum Chem. 1980, 18, 841.
< P. E. S., Paldus J.: https://doi.org/10.1002/qua.560180317>
3n. Int. J. Quantum Chem. 1982, 22, 1281.
< J., Boyle M. J.: https://doi.org/10.1002/qua.560220611>
3o. Phys. Rev. B: Condens. Matter 1984, 30, 4267.
< J., Takahashi M., Cho R. W. H.: https://doi.org/10.1103/PhysRevB.30.4267>
3p. Int. J. Quantum Chem. 1992, 42, 135.
< J., Piecuch P.: https://doi.org/10.1002/qua.560420110>
3q. J. Chem. Phys. 2003, 119, 5334.
< X., Paldus J.: https://doi.org/10.1063/1.1599302>
3r. Stuber J. L., Paldus J. in: Fundamental World of Quantum Chemistry (E. J. Brändas and E. S. Kryachko, Eds), Vol. I. Kluwer, Dordrecht 2003.
4a. J. Phys. A: Math. Gen. 1991, 24, L721.
< M.-L., Su G.: https://doi.org/10.1088/0305-4470/24/13/004>
4b. J. Phys. A: Math. Gen. 1991, 24, L1285.
< M. A.: https://doi.org/10.1088/0305-4470/24/21/006>
4c. Phys. Lett. A 1992, 164, 164.
< C. R., Yu J.-P.: https://doi.org/10.1016/0375-9601(92)90696-J>
4d. Phys. Lett. A 1993, 173, 17.
< G., Ge M.-L.: https://doi.org/10.1016/0375-9601(93)90079-F>
4e. Phys. Lett. A 1993, 175, 173.
< J. A., Rubin J. L., Meyer J., Kibler M.: https://doi.org/10.1016/0375-9601(93)90822-H>
4f. Phys. Lett. A 1993, 176, 173.
< V. I., Marmo G., Solimeno S., Zaccaria F.: https://doi.org/10.1016/0375-9601(93)91029-5>
4g. Phys. Lett. A 1993, 180, 314.
< R.-R., Lee C.-R.: https://doi.org/10.1016/0375-9601(93)91183-6>
4h. Mod. Phys. Lett. A 1993, 8, 1029.
< I., Zhedanov A. S.: https://doi.org/10.1142/S0217732393002518>
4i. J. Phys. A: Math. Gen. 1993, 26, 4017.
< M., Felipe R. G., Montonen C.: https://doi.org/10.1088/0305-4470/26/16/018>
4j. J. Phys. A: Math. Gen. 1994, 27, 1427.
< R. K., Bach C. T., Rosu H.: https://doi.org/10.1088/0305-4470/27/5/010>
4k. Phys. Lett. A 1994, 188, 11.
< M. A. R., Roditi I., Rodrigues L. M. C. S.: https://doi.org/10.1016/0375-9601(94)90109-0>
4l. Phys. Lett. A 1995, 199, 81.
< R.-S.: https://doi.org/10.1016/0375-9601(95)00080-M>
4m. Phys. Lett. A 1995, 206, 13.
< M., Kibler M.: https://doi.org/10.1016/0375-9601(95)00580-V>
5a. Nucl. Phys. B 1990, 330, 285.
< E.: https://doi.org/10.1016/0550-3213(90)90115-T>
5b. Prog. Theor. Phys. 1990, 83, 363.
< S.: https://doi.org/10.1143/PTP.83.363>
5c. Chem. Phys. Lett. 1990, 175, 300.
< D., Raychev P. P., Roussev R. P., Smirnov Yu. F.: https://doi.org/10.1016/0009-2614(90)80114-S>
5d. Phys. Lett. A 1991, 154, 254.
< Z., Yan H.: https://doi.org/10.1016/0375-9601(91)90816-Q>
5e. Phys. Lett. A 1991, 156, 192.
< Z., Guo H.-Y., Yan H.: https://doi.org/10.1016/0375-9601(91)90936-3>
5f. Phys. Lett. A 1991, 158, 242.
< Z., Yan H.: https://doi.org/10.1016/0375-9601(91)91007-Z>
5g. J. Phys. G: Nucl. Part. Phys. 1991, 17, L67.
< D., Drenska S. B., Raychev P. P., Roussev R. P., Smirnov Yu. F.: https://doi.org/10.1088/0954-3899/17/5/003>
5h. Chem. Phys. Lett. 1991, 178, 221.
< D., Raychev P. P., Faessler A.: https://doi.org/10.1016/0009-2614(91)87060-O>
5i. J. Phys. A: Math. Gen. 1991, 24, L403.
< D., Argyres E. N., Raychev P. P.: https://doi.org/10.1088/0305-4470/24/8/003>
5j. Mod. Phys. Lett. A 1995, 10, 51.
< L., Kibler M., Mishchenko A.: https://doi.org/10.1142/S0217732395000065>
5k. Barbier R., Kibler M. in: Finite Dimensional Integrable Systems (A. N. Sissakian and G. S. Pogosyan, Eds). JINR, Dubna 1995.
5l. Barbier R., Kibler M. in: Modern Group Theoretical Methods in Physics (J. Bertrand, M. Flato, J.-P. Gazeau, D. Sternheimer and M. Irac-Astaud, Eds). Kluwer, Dordrecht 1995.
5m. Rep. Math. Phys. 1996, 38, 221.
< R., Kibler M.: https://doi.org/10.1016/0034-4877(96)88953-1>
6a. Z. Phys. 1927, 43, 624.
< E. P.: https://doi.org/10.1007/BF01397327>
6b. Am. J. Math. 1941, 63, 57.
< E. P.: https://doi.org/10.2307/2371276>
6c. Wigner E. P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York 1959.
6d. Wigner E. P. in: Quantum Theory of Angular Momemtum (L. C. Biedenharn and H. van Dam, Eds). Academic Press, New York 1965.
6e. Wigner E. P. in: Spectroscopic, Group Theoretical Methods in Physics (F. Bloch, S. G. Cohen, A. de-Shalit, S. Sambursky and I. Talmi, Eds). North-Holland, Amsterdam 1968.
6f. Proc. R. Soc. London, Ser. A 1971, 322, 181.
< E. P.: https://doi.org/10.1098/rspa.1971.0062>
6g. Can. J. Math. 1972, 24, 432.
< F. G., Wigner E. P.: https://doi.org/10.4153/CJM-1972-036-3>
6h. SIAM J. Appl. Math. 1973, 25, 169.
< E. P.: https://doi.org/10.1137/0125022>
7a. Phys. Rev. 1942, 61, 186.
< G.: https://doi.org/10.1103/PhysRev.61.186>
7b. Phys. Rev. 1942, 62, 438.
< G.: https://doi.org/10.1103/PhysRev.62.438>
7c. Phys. Rev. 1943, 63, 367.
< G.: https://doi.org/10.1103/PhysRev.63.367>
7d. Phys. Rev. 1949, 76, 1352.
< G.: https://doi.org/10.1103/PhysRev.76.1352>
7e. Phys. Rev. 1950, 78, 622.
< G.: https://doi.org/10.1103/PhysRev.78.622>
7f. Bull. Res. Council Isr., Sect. F 1959, 8, 1.
G.:
7g. Racah G.: Ergebnisse der exakten Naturwissenschaften, Vol. 37, p. 27. Springer-Verlag, Berlin 1965.
7h. Fano U., Racah G.: Irreducible Tensorial Sets. Academic Press, New York 1959.
7i. Phys. Rev. 1967, 156, 58.
< G., Stein J.: https://doi.org/10.1103/PhysRev.156.58>
8a. Phys. Lett. A 1978, 68, 147.
< G., Kibler M.: https://doi.org/10.1016/0375-9601(78)90786-7>
8b. Phys. Lett. A 1979, 71, 323.
< G., Kibler M.: https://doi.org/10.1016/0375-9601(79)90066-5>
8c. J. Math. Phys. 1980, 21, 422.
< M., Grenet G.: https://doi.org/10.1063/1.524439>
9a. J. Mol. Spectrosc. 1968, 26, 111.
< M.: https://doi.org/10.1016/0022-2852(68)90148-3>
9b. Int. J. Quantum Chem. 1969, 3, 795.
< M.: https://doi.org/10.1002/qua.560030606>
9c. C. R. Acad. Sci., Ser. B 1969, 268, 1221.
M.:
9d. J. Math. Phys. 1976, 17, 855.
< M. R.: https://doi.org/10.1063/1.522996>
9e. J. Mol. Spectrosc. 1976, 62, 247.
< M. R.: https://doi.org/10.1016/0022-2852(76)90353-2>
9f. J. Phys. A: Math. Gen. 1977, 10, 2041.
< M. R.: https://doi.org/10.1088/0305-4470/10/12/013>
9g. Int. J. Quantum Chem. 1976, 10, 87.
< M. R., Guichon P. A. M.: https://doi.org/10.1002/qua.560100108>
9h. Int. J. Quantum Chem. 1977, 11, 359.
< M. R., Grenet G.: https://doi.org/10.1002/qua.560110216>
9i. Int. J. Quantum Chem. 1983, 23, 115.
< M. R.: https://doi.org/10.1002/qua.560230113>
10a. J. Mol. Spectrosc. 1965, 15, 344.
< J.: https://doi.org/10.1016/0022-2852(65)90150-5>
10b. Can. J. Phys. 1977, 55, 512.
< J. P., Pierre G., Michelot F., Moret-Bailly J.: https://doi.org/10.1139/p77-070>
10c. J. Math. Phys. 1973, 14, 1130.
< J., Winternitz P.: https://doi.org/10.1063/1.1666449>
10d. J. Chem. Phys. 1976, 65, 2725.
< J., Winternitz P.: https://doi.org/10.1063/1.433416>
10e. Michel L. in: Group Theoretical Methods in Physics (R. T. Sharp and B. Kolman, Eds). Academic Press, New York 1977.
11a. J. Math. Phys. 1976, 17, 524.
< M., Coon D. D.: https://doi.org/10.1063/1.522937>
11b. J. Phys. A: Math. Gen. 1989, 22, L873.
< L. C.: https://doi.org/10.1088/0305-4470/22/18/004>
11c. J. Phys. A: Math. Gen. 1989, 22, L983.
< C.-P., Fu H.-C.: https://doi.org/10.1088/0305-4470/22/21/001>
11d. J. Phys. A: Math. Gen. 1989, 22, 4581.
< A. J.: https://doi.org/10.1088/0305-4470/22/21/020>
11e. J. Math. Phys. 1990, 31, 1088.
< D. B., Fletcher P., Zachos C. K.: https://doi.org/10.1063/1.528788>
11f. Phys. Rev. D: Part. Fields 1991, 43, 4111.
< O. W.: https://doi.org/10.1103/PhysRevD.43.4111>
11g. Lett. Math. Phys. 1992, 24, 147.
< G.: https://doi.org/10.1007/BF00402678>
11h. Kibler M. R. in: Symmetry, Structural Properties of Condensed Matter (W. Florek, D. Lipiński and T. Lulek, Eds). World Scientific, Singapore 1993.
11i. Daoud M., Hassouni Y., Kibler M. in: Symmetries in Science X (B. Gruber and M. Ramek, Eds). Plenum Press, New York 1998.
11j. Phys. Lett. A 2004, 321, 147.
< M., Kibler M.: https://doi.org/10.1016/j.physleta.2003.12.027>
11k. Kibler M., Daoud M. in: Fundamental World of Quantum Chemistry (E. J. Brändas and E. S. Kryachko, Eds), Vol. III. Kluwer, Dordrecht 2003.
12. Schwinger J. in: Quantum Theory of Angular Momentum (L. C. Biedenharn and H. van Dam, Eds). Academic Press, New York 1965.
13. Rev. Mex. Fis. 1973, 22, 15.
J.-M.:
14. Edmonds A. R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton 1960.
15a. Phys. Rev. A: At., Mol., Opt. Phys. 1990, 41, 1653.
< A.: https://doi.org/10.1103/PhysRevA.41.1653>
15b. Phys. Rev. A: At., Mol., Opt. Phys. 1991, 43, 1564.
< A.: https://doi.org/10.1103/PhysRevA.43.1564>
15c. Phys. Rev. A: At., Mol., Opt. Phys. 1993, 47, 3523.
< A., Bendjaballah C.: https://doi.org/10.1103/PhysRevA.47.3523>
15d. J. Phys. A: Math. Gen. 1996, 29, 4275.
< A.: https://doi.org/10.1088/0305-4470/29/14/043>
15e. Phys. Lett. A 2003, 315, 1.
< M., Rosu H. C.: https://doi.org/10.1016/S0375-9601(03)00942-3>
15f. J. Opt. B: Quantum Semiclassical Opt. 2004, 6, S583.
< M., Rosu H.: https://doi.org/10.1088/1464-4266/6/6/018>
15g. J. Opt. B: Quantum Semiclassical Opt. 2004, 6, L19.
< M., Planat M., Rosu H.: https://doi.org/10.1088/1464-4266/6/9/L01>