Collect. Czech. Chem. Commun. 2005, 70, 951-978
https://doi.org/10.1135/cccc20050951

Coupled-Cluster Study of Spectroscopic Constants of the Alkali Metal Diatomics: Ground and the Singlet Excited States of Na2, NaLi, NaK, and NaRb

Pavel Neográdya, Péter G. Szalayb, Wolfgang P. Kraemerc and Miroslav Urbana,*

a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, SK-84215 Slovakia
b Department of Theoretical Chemistry, Loránd Eötvös University, Budapest, H-1518 Hungary
c Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, Garching, POB 1523, D-85741 Germany

References

1a. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
1b. Čížek J.: Adv. Chem. Phys. 1969, 14, 35.
1c. Čížek J., Paldus J.: Int. J. Quantum Chem. 1971, 5, 359. <https://doi.org/10.1002/qua.560050402>
2. Paldus J., Li X.: Adv. Chem. Phys. 1999, 110, 1. <https://doi.org/10.1002/9780470141694.ch1>
3. Paldus J. in: Methods in Molecular Physics (S. Wilson and G. H. F. Diercksen, Eds), p. 99. NATO ASI B: Physics, 293. Plenum Press, New York 1992.
4. Bartlett R. J. in: Modern Electronic Structure Theory, Part II (D. R. Yarkony, Ed.), p. 1047. World Scientific, Singapore 1995.
5. Urban M., Černušák I., Kellö V., Noga J. in: Methods in Computational Chemistry (S. Wilson, Ed.), Vol. 1, p. 117. Plenum, New York 1987.
6. Gauss J. in: Encyclopedia of Computational Chemistry (P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollmann, H. F. Schaefer and P. R. Schreiner, Eds), p. 615. Wiley, Chichester 1998.
7. Purvis G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
8. Rittby M., Bartlett R. J.: J. Phys. Chem. 1988, 92, 3033. <https://doi.org/10.1021/j100322a004>
9. Li X., Paldus J.: J. Chem. Phys. 1995, 102, 8059. <https://doi.org/10.1063/1.469005>
10. Balková A., Bartlett R. J.: Chem. Phys. Lett. 1992, 193, 364. <https://doi.org/10.1016/0009-2614(92)85644-P>
11. Szalay P., Bartlett R. J.: J. Chem. Phys. 1994, 101, 4936. <https://doi.org/10.1063/1.467416>
12. Balková A., Kucharski S. A., Meissner L., Bartlett R. J.: J. Chem. Phys. 1991, 95, 4311. <https://doi.org/10.1063/1.461754>
13. Jeziorski B., Monkhorst H.: Phys. Rev. A 1981, 24, 1668. <https://doi.org/10.1103/PhysRevA.24.1668>
14. Verma K. K., Bahns J. T., Rajaei-Rizi A. R., Stwalley W. C.: J. Chem. Phys. 1983, 78, 3599. <https://doi.org/10.1063/1.445188>
15. Chung H.-K., Kirby K., Dalgarno A.: Phys. Rev. A 2001, 63, 2516.
16. Russier-Antoine I., Ross A. J., Aubert-Frecon M., Martin F., Crozet P.: J. Phys. B 2000, 33, 2753. <https://doi.org/10.1088/0953-4075/33/14/312>
17. Zemke W. T., Stwalley W. C.: J. Chem. Phys. 2001, 114, 10811. <https://doi.org/10.1063/1.1368381>
18. Magnier S., Millie Ph.: Phys. Rev. 1996, 54, 204. <https://doi.org/10.1103/PhysRevA.54.204>
19. Tamanis M., Ferber R., Zaitsevskii A., Pozyuk E. A., Stolyarov A. V., Chen H., Qi J., Wang H., Stwalley W. C.: J. Chem. Phys. 2002, 117, 7980. <https://doi.org/10.1063/1.1505442>
20a. Kaldor U.: Isr. J. Chem. 1991, 31, 345. <https://doi.org/10.1002/ijch.199100039>
20b. Ilyabaev E., Kaldor U.: J. Phys. Chem. 1993, 98, 7126. <https://doi.org/10.1063/1.465097>
21. Chattopadhyay S., Ghosh P., Mahapatra U. S.: J. Phys. B 2004, 37, 495. <https://doi.org/10.1088/0953-4075/37/2/016>
22. Malrieu J. P., Daudey J. P., Caballol R.: J. Chem. Phys. 1994, 101, 8908. <https://doi.org/10.1063/1.468083>
23. Adamowicz L., Malrieu J. P., Ivanov V. V.: J. Chem. Phys. 2000, 112, 10075. <https://doi.org/10.1063/1.481649>
24. Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1991, 95, 8227. <https://doi.org/10.1063/1.461301>
25. Bloch C.: Nucl. Phys. 1958, 6, 329. <https://doi.org/10.1016/0029-5582(58)90116-0>
26. Meissner L., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1989, 91, 6187. <https://doi.org/10.1063/1.457437>
27. Meissner L., Bartlett R. J.: J. Chem. Phys. 1990, 92, 561. <https://doi.org/10.1063/1.458406>
28. Li X., Paldus J.: J. Chem. Phys. 2003, 119, 5320. <https://doi.org/10.1063/1.1599283>
29. Pittner J., Li X., Paldus J.: Mol. Phys. 2005, in press.
30. Pittner J.: J. Chem. Phys. 2003, 118, 10876. <https://doi.org/10.1063/1.1574785>
31a. Hubač I., Wilson S.: J. Phys. B 2000, 33, 365. <https://doi.org/10.1088/0953-4075/33/3/306>
31b. Hubač I., Pittner J., Čársky P.: J. Phys. Chem. 2000, 112, 8779. <https://doi.org/10.1063/1.481493>
32. Andersson K., Barysz M., Bernhardsson A., Blomberg M., Cooper D. L., Fleig T., Fülscher M. P. , de Graaf C., Hess B. A., Karlström G., Lindh R., Malmqvist P.-Å., Neogrády P., Olsen J., Roos B. O., Sadlej A. J., Schütz M., Schimmelpfennig B., Seijo L., Serrano-Andrés L., Siegbahn P. E. M., Stalring J., Thorsteinsson T., Veryazov V., Widmark P.-O.: MOLCAS, Version 5. Lund University, Lund 2000.
33. Neogrády P., Szalay P. G.: Unpublished results.
34a. Sadlej A. J., Urban M.: J. Mol. Struct. (THEOCHEM) 1991, 80, 147. <https://doi.org/10.1016/0166-1280(91)89010-X>
34b. Černušák I., Kellö V., Sadlej A. J.: Collect. Czech. Chem. Commun. 2003, 68, 211. <https://doi.org/10.1135/cccc20030211>
35. Miadoková I., Kellö V., Sadlej A. J.: Theor. Chim. Acta 1997, 96, 166.
36a. Douglas M., Kroll M. N.: Ann. Phys. (N. Y.) 1974, 82, 89. <https://doi.org/10.1016/0003-4916(74)90333-9>
36b. Hess B. A.: Phys. Rev. A 1986, 33, 3742. <https://doi.org/10.1103/PhysRevA.33.3742>
37. Pol/HyPol basis set link: www.qch.fns.uniba.sk/baslib.html.
38. Urban M., Sadlej A. J.: J. Chem. Phys. 1995, 103, 9692. <https://doi.org/10.1063/1.469984>
39. Urban M., Sadlej A. J.: Mol. Phys. 1997, 92, 587. <https://doi.org/10.1080/00268979709482130>
40. Boys S. F., Bernardi F.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
41. Neogrády P., Urban M., Hubač I.: J. Chem. Phys. 1994, 100, 3706. <https://doi.org/10.1063/1.466359>
42. Neogrády P., Urban M.: Int. J. Quantum Chem. 1995, 55, 187. <https://doi.org/10.1002/qua.560550214>
43. Knowles P. J., Hampel C., Werner H.-J.: J. Chem. Phys. 1993, 99, 5219. <https://doi.org/10.1063/1.465990>
44. Szalay P., Gauss J.: J. Chem. Phys. 1997, 107, 9028. <https://doi.org/10.1063/1.475220>
45. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
46. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041. <https://doi.org/10.1063/1.449067>
47. Gerber G., Moeller R.: Chem. Phys. Lett. 1985, 113, 546. <https://doi.org/10.1016/0009-2614(85)85029-6>
48. Kusch P., Hessel M. M.: J. Chem. Phys. 1978, 68, 2591. <https://doi.org/10.1063/1.436117>
49a. Kappes M. M., Marti K. O., Radi P., Schar M., Schumacher E.: Chem. Phys. Lett. 1984, 107, 6. <https://doi.org/10.1016/0009-2614(84)85346-4>
49b. Kappes M. M., Marti K. O., Radi P., Schar M., Schumacher E.: Chem. Phys. Lett. 1984, 111, 514. <https://doi.org/10.1016/0009-2614(84)85551-7>
50. Hessel M. M.: Phys. Rev. Lett. 1971, 26, 215. <https://doi.org/10.1103/PhysRevLett.26.215>
51. Ross A. J., Clements R. M., Barrow R. F.: J. Mol. Spectrosc. 1988, 127, L546. <https://doi.org/10.1016/0022-2852(88)90142-7>
52. Kasahara S., Baba M., Kato H.: J. Chem. Phys. 1991, 94, 7713. <https://doi.org/10.1063/1.460157>
53. Wang Y.-C., Kajitani M., Kasahara S., Baba M., Ishikawa K., Kato H.: J. Chem. Phys. 1991, 95, 6229. <https://doi.org/10.1063/1.461569>
54. NIST Phys. Rev. Data Handbook. http://webbook.nist.gov/chemistry.
55a. Magnier S., Millie Ph., Dulieu O., Masnon-Seeuws F.: J. Chem. Phys. 1993, 98, 7113. <https://doi.org/10.1063/1.464755>
55b. Barrow R. F., Verges J., Effantin C., Hussein K., d’Incan J.: Chem. Phys. Lett. 1984, 104, 179. <https://doi.org/10.1016/0009-2614(84)80192-X>
56. Vedder H. J., Chawla G. K., Field R. F.: Chem. Phys. Lett. 1984, 111, 303. <https://doi.org/10.1016/0009-2614(84)85511-6>
57. Tiemann E.: Z. Phys. D 1987, 5, 77. <https://doi.org/10.1007/BF01436577>
58. Hessel M. M.: Phys. Rev. Lett. 1971, 26, 215. <https://doi.org/10.1103/PhysRevLett.26.215>
59. Engelke F., Ennen G., Meiwes K. H.: Chem. Phys. 1982, 66, 391. <https://doi.org/10.1016/0301-0104(82)88039-7>
60. Habitz P., Schwarz W. H. E., Ahlrichs R.: J. Chem. Phys. 1977, 66, 5117. <https://doi.org/10.1063/1.433770>
61. Merawa M., Begue D., Dargelos A.: Chem. Phys. Lett. 2003, 372, 529. <https://doi.org/10.1016/S0009-2614(03)00436-6>
62. Breford E. J., Engelke F.: J. Chem. Phys. 1979, 71, 1994. <https://doi.org/10.1063/1.438590>
63. Magnier S., Aubert-Frecon M., Millie Ph.: J. Mol. Spectrosc. 2000, 200, 96. <https://doi.org/10.1006/jmsp.1999.8023>
64. Wormsbecher R. F., Hessel M. M., Lovas F. J.: J. Chem. Phys. 1981, 74, 6983. <https://doi.org/10.1063/1.441067>
65. Takahashi N., Kato H.: J. Chem. Phys. 1981, 75, 4350. <https://doi.org/10.1063/1.442642>