Collect. Czech. Chem. Commun.
2005, 70, 979-1016
https://doi.org/10.1135/cccc20050979
The Hodge Operator in Fermionic Fock Space
Leszek Z. Stolarczyk
Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
References
1. Z. Phys. 1925, 31, 765.
< W.: https://doi.org/10.1007/BF02980631>
2. Z. Phys. 1928, 47, 631.
< P., Wigner E.: https://doi.org/10.1007/BF01331938>
3. Z. Phys. 1932, 75, 622.
< V.: https://doi.org/10.1007/BF01344458>
4. Adv. Quantum Chem. 1975, 9, 105.
< J., Čížek J.: https://doi.org/10.1016/S0065-3276(08)60040-4>
5. Paldus J.: Diagrammatical Methods for Many-Fermion Systems. Lecture Notes. University of Nijmegen, Nijmegen (The Netherlands) 1981.
6. Thirring W.: Lehrbuch in Mathematischen Physik, Band 2: Klassische Feldtheorie. Springer, Wien 1978.
7. Komorowski J.: From Complex Numbers to Tensors, Spinors, Lie Algebras, and Quadrics (in Polish). PWN, Warszaw 1978.
8. Hodge W. V. D.: The Theory and Application of Harmonic Integrals. Cambridge University Press, Cambridge 1941.
9. Ann. Math. 1943, 44, 1.
< H.: https://doi.org/10.2307/1969060>
10. Göttinger Nachr., Math.-Phys. 1932, 31, 546.
E. P.:
11. Jauch J. M.: Foundations of Quantum Mechanics. Addison–Wesley, Reading (Mass.) 1968.
12. J. Chem. Phys. 1985, 83, 1722.
< J., Paldus J., Čížek J.: https://doi.org/10.1063/1.449359>
13. Phys. Rev. A 1985, 32, 725.
< L. Z., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.32.725>
14. Hamermesh M.: Group Theory and Its Application to Physical Problems. Addison–Wesley, Reading (Mass.) 1962.
15. Ann. Phys. (N.Y.) 1971, 66, 311.
< M., Seligman T. H.: https://doi.org/10.1016/0003-4916(71)90191-6>
16. J. Chem. Phys. 1998, 108, 616.
< M., Maslen P. E., White C. A.: https://doi.org/10.1063/1.475423>
17. J. Chem. Phys. 1991, 95, 2595.
< T., Jørgensen T.: https://doi.org/10.1063/1.460912>