Collect. Czech. Chem. Commun. 2005, 70, 1055-1081
https://doi.org/10.1135/cccc20051055

Electric Properties of Cyanoborane Isomers

Miroslav Medveďa,*, Ivan Černušákb, Stanislav Kedžuchc and Jozef Nogab,c

a Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic
b Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH1, SK-84215 Bratislava, Slovak Republic
c Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovak Republic

References

1. Spielvogel B. F., Bratton R. F., Moreland C. G.: J. Am. Chem. Soc. 1972, 94, 8597. <https://doi.org/10.1021/ja00779a061>
2. Jug K.: J. Org. Chem. 1984, 49, 4475. <https://doi.org/10.1021/jo00197a029>
3. Byun Y. G., Saebo S., Pittman S. U., Jr.: J. Am. Chem. Soc. 1991, 113, 3689. <https://doi.org/10.1021/ja00010a009>
4. Černušák I., Beck S., Bartlett R. J.: J. Phys. Chem. 1992, 96, 10284. <https://doi.org/10.1021/j100204a035>
5. Černušák I., Urban M., Ertl P., Bartlett R. J.: J. Am. Chem. Soc. 1992, 114, 10955. <https://doi.org/10.1021/ja00053a039>
6. Černušák I., Urban M., Stanton J. F., Bartlett R. J.: J. Phys. Chem. 1994, 98, 8653. <https://doi.org/10.1021/j100086a012>
7. Pappová A., Černušák I., Urban M., Liebman J. F.: J. Phys. Chem. A 2000, 104, 5810. <https://doi.org/10.1021/jp9940957>
8. Gregušová A., Černušák I., Malkina O., Noga J.: Phys. Chem. Chem. Phys. 2003, 5, 4084. <https://doi.org/10.1039/b307288f>
9. Soncini A., Fowler P. W., Černušák I., Steiner E.: Phys. Chem. Chem. Phys. 2003, 3, 3920. <https://doi.org/10.1039/b103929f>
10. Černušák I., Fowler P. W., Steiner E.: Mol. Phys. 2000, 98, 945. <https://doi.org/10.1080/00268970050032792>
11. Černušák I., Lischka H.: Chem. Phys. Lett. 1995, 241, 261. <https://doi.org/10.1016/0009-2614(95)00632-E>
12. Champagne B., Kirtman B. in: Handbook of Advanced Electronic and Photonic Materials and Devices (H. S. Nalez, Ed.), Vol. 9, pp. 63–126. Academic Press, San Diego 2001.
13. Jacquemin D., Champagne B., André J. M.: Chem. Phys. Lett. 1998, 213, 24. <https://doi.org/10.1016/S0009-2614(97)01260-8>
14. Jacquemin D., Champagne B., André J. M.: Synth. Met. 1996, 80, 205. <https://doi.org/10.1016/S0379-6779(96)03704-6>
15. Jacquemin D., Perpète E. A., Champagne B.: Phys. Chem. Chem. Phys. 2002, 4, 432. <https://doi.org/10.1039/b108044j>
16. Buckingham A. D.: Adv. Chem. Phys. 1967, 12, 107. <https://doi.org/10.1002/9780470143582.ch2>
17. Willetts A., Rice J. E., Burland D. M., Shelton D. P.: J. Chem. Phys. 1992, 97, 7590. <https://doi.org/10.1063/1.463479>
18. Torrent-Sucarrat M., Solà M., Duran M., Luis J. M., Kirtman B.: J. Chem. Phys. 2002, 116, 5363. <https://doi.org/10.1063/1.1453953>
19. Champagne B.: Elaboration de méthodes de chimie quantique pour l’évaluation des hyperpolarizabilités vibrationnelles – Conséquences pour l’optique non-linéaire, pp. 1–150. FUNDP, Namur (Belgique) 2001.
20. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
21. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
22. Čížek J.: Adv. Chem. Phys. 1969, 14, 35.
23. Čížek J., Paldus J.: Phys. Scr. 1980, 21, 251. <https://doi.org/10.1088/0031-8949/21/3-4/006>
24. Paldus J., Li X.: Adv. Chem. Phys. 1999, 110, 1. <https://doi.org/10.1002/9780470141694.ch1>
25. Bartlett R. J. in: Modern Electronic Structure Theory, Part II (D. R. Yarkony, Ed.), pp. 1047–1131. World Scientific, Singapore 1995.
26. Urban M., Černušák I., Kellö V., Noga J. in: Methods in Computational Chemistry (S. Wilson, Ed.), pp. 117–250. Plenum Press, New York 1987.
27. Lee T. J., Scuseria G. in: Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy (S. R. Langhoff, Ed.), pp. 47–108. Kluwer Academic Publishers, Dordrecht 1995.
28. Bartlett R. J. (Ed.): Recent Advances in Computational Chemistry. Recent Advances in Coupled-Cluster Methods, Vol. 3, pp. 1–330. World Scientific, Singapore 1997.
29. Purvis G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
30. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
31. Bartlett R. J., Watts J. D., Kucharski S. A., Noga J.: Chem. Phys. Lett. 1990, 165, 513. <https://doi.org/10.1016/0009-2614(90)87031-L>
32. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041. <https://doi.org/10.1063/1.449067>
33. Olsen J., Jørgensen P.: J. Chem. Phys. 1985, 82, 3235. <https://doi.org/10.1063/1.448223>
34. Norman P., Jonsson D., Vahtras O., Ågren H.: Chem. Phys. Lett. 1995, 242, 7. <https://doi.org/10.1016/0009-2614(95)00716-H>
35. Rutihauser H.: Numer. Mat. 1963, 5, 48. <https://doi.org/10.1007/BF01385877>
36. Christiansen O., Halkier A., Koch H., Jørgensen P., Helgaker T.: J. Chem. Phys. 1998, 108, 2801. <https://doi.org/10.1063/1.475671>
37. Hättig C., Christiansen O., Koch H., Jørgensen P.: Chem. Phys. Lett. 1997, 269, 428. <https://doi.org/10.1016/S0009-2614(97)00311-4>
38. Hättig C., Christiansen O., Jørgensen P.: Chem. Phys. Lett. 1998, 282, 139. <https://doi.org/10.1016/S0009-2614(97)01227-X>
39. Christiansen O., Jørgensen P., Hättig C.: Int. J. Quantum Chem. 1998, 68, 1. <https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z>
40. Christiansen O., Koch H., Jørgensen P.: Chem. Phys. Lett. 1995, 243, 409. <https://doi.org/10.1016/0009-2614(95)00841-Q>
41. Christiansen O., Gauss J., Stanton J. F.: Chem. Phys. Lett. 1998, 292, 437. <https://doi.org/10.1016/S0009-2614(98)00701-5>
42. Gauss J., Christiansen O., Stanton J. F.: Chem. Phys. Lett. 1998, 296, 117. <https://doi.org/10.1016/S0009-2614(98)01013-6>
43. Christiansen O., Gauss J., Stanton J. F.: Chem. Phys. Lett. 1999, 305, 147. <https://doi.org/10.1016/S0009-2614(99)00358-9>
44. Salter E. A., Sekino H., Bartlett R. J.: J. Chem. Phys. 1987, 87, 502. <https://doi.org/10.1063/1.453596>
45. Christiansen O., Hättig C., Gauss J.: J. Chem. Phys. 1998, 109, 4745. <https://doi.org/10.1063/1.477086>
46. Larsen H., Olsen J., Hättig C., Jørgensen P., Christiansen O., Gauss J.: J. Chem. Phys. 1999, 111, 1917. <https://doi.org/10.1063/1.479460>
47. Hättig C., Jørgensen P.: J. Chem. Phys. 1998, 109, 2762. <https://doi.org/10.1063/1.476833>
48a. Maroulis G.: J. Chem. Phys. 1998, 108, 5432. <https://doi.org/10.1063/1.475932>
48b. Maroulis G.: Chem. Phys. Lett. 1998, 289, 403. <https://doi.org/10.1016/S0009-2614(98)00439-4>
48c. Maroulis G., Pouchan C.: Phys. Rev. A: At., Mol., Opt. Phys. 1998, 57, 2440. <https://doi.org/10.1103/PhysRevA.57.2440>
48d. Maroulis G.: Chem. Phys. Lett. 1999, 312, 255. <https://doi.org/10.1016/S0009-2614(99)00939-2>
48e. Maroulis G.: J. Chem. Phys. 1999, 111, 6846. <https://doi.org/10.1063/1.479977>
49. Maroulis G., Thakkar A. J.: J. Chem. Phys. 1991, 95, 9060. <https://doi.org/10.1063/1.461185>
50. Medveď M., Champagne B., Noga J., Perpète E. A.: J. Comput. Methods Sci. Eng. 2004, 4, 251.
51. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
52. Kendall R. A., Dunning T. H., Jr., Harrison R. J.: J. Chem. Phys. 1992, 96, 6769. <https://doi.org/10.1063/1.462569>
53. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
54. Larsen H., Hättig C., Olsen J., Jørgensen P.: Chem. Phys. Lett. 1998, 291, 536. <https://doi.org/10.1016/S0009-2614(98)00597-1>
55. Avramopoulos A., Reis H., Li J., Papadopoulos M. G.: J. Am. Chem. Soc. 2004, 126, 6179. <https://doi.org/10.1021/ja036319b>
56. Sadlej A. J.: Collect. Czech. Chem. Commun. 1988, 53, 1995. <https://doi.org/10.1135/cccc19881995>
57. Sadlej A. J.: Theor. Chim. Acta. 1991, 79, 123. <https://doi.org/10.1007/BF01127101>
58. Pluta T., Sadlej A. J.: Chem. Phys. Lett. 1998, 297, 391. <https://doi.org/10.1016/S0009-2614(98)01132-4>
59. Eckart U., Fülscher M. P., Serrano-Andrés L., Sadlej A. J.: J. Chem. Phys. 2000, 113, 6235. <https://doi.org/10.1063/1.1290012>
60. Pluta T., Sadlej A. J.: J. Chem. Phys. 2001, 114, 136. <https://doi.org/10.1063/1.1328398>
61. Eckart U., Ingamells V. E., Papadopoulos M. G., Sadlej A. J.: J. Chem. Phys. 2001, 114, 735. <https://doi.org/10.1063/1.1331358>
62. Peterson K. A., Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 7410. <https://doi.org/10.1063/1.466884>
63. Feller D., Sordo J. A.: J. Chem. Phys. 2000, 113, 485. <https://doi.org/10.1063/1.481827>
64. Feller D., Peterson K. A.: J. Mol. Struct. (THEOCHEM) 1997, 400, 69. <https://doi.org/10.1016/S0166-1280(97)90269-4>
65. Helgaker T., Klopper W., Koch H., Noga J.: J. Chem. Phys. 1997, 106, 9639. <https://doi.org/10.1063/1.473863>
66. Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.: Chem. Phys. Lett. 1998, 286, 243. <https://doi.org/10.1016/S0009-2614(98)00111-0>
67. Martin J. M. L., De Oliviera G.: J. Chem. Phys. 1999, 111, 1843. <https://doi.org/10.1063/1.479454>
68. Parthiban S., Martin J. M. L.: J. Chem. Phys. 2001, 114, 6014. <https://doi.org/10.1063/1.1356014>
69. Sordo J. A.: J. Chem. Phys. 2001, 114, 1974. <https://doi.org/10.1063/1.1335617>
70. Wilson A. K., Dunning T. H., Jr.: J. Chem. Phys. 1997, 106, 8718. <https://doi.org/10.1063/1.473932>
71. Feller D., Peterson K. A.: J. Chem. Phys. 1998, 108, 154. <https://doi.org/10.1063/1.475370>
72. Feller D.: J. Chem. Phys. 1992, 96, 6104. <https://doi.org/10.1063/1.462652>
73. Feller D.: J. Chem. Phys. 1993, 98, 7059. <https://doi.org/10.1063/1.464749>
74. Zahradník R., Šroubková L.: Isr. J. Chem. 2003, 43, 243. <https://doi.org/10.1560/KJPV-MPGQ-NVVX-252K>
75. Neogrády P., Medveď M., Černušák I., Urban M.: Mol. Phys. 2002, 100, 541. <https://doi.org/10.1080/00268970110095660>
76. Kutzelnigg W.: Theor. Chim. Acta 1985, 68, 445. <https://doi.org/10.1007/BF00527669>
77. Noga J., Kutzelnigg W., Klopper W.: Chem. Phys. Lett. 1992, 199, 497. <https://doi.org/10.1016/0009-2614(92)87034-M>
78. Noga J., Kutzelnigg W.: J. Chem. Phys. 1994, 101, 7738. <https://doi.org/10.1063/1.468266>
79. Klopper W., Kutzelnigg W.: Chem. Phys. Lett. 1987, 134, 17. <https://doi.org/10.1016/0009-2614(87)80005-2>
80. Klopper W.: Chem. Phys. Lett. 1991, 186, 583. <https://doi.org/10.1016/0009-2614(91)90471-K>
81. Franke R., Müller H., Noga J.: J. Chem. Phys. 2001, 115, 2022.
82. Noga J., Valiron P.: Collect. Czech. Chem. Commun. 2003, 68, 340. <https://doi.org/10.1135/cccc20030340>
83. Valiron P., Kedžuch S., Noga J.: Chem. Phys. Lett. 2003, 367, 723. <https://doi.org/10.1016/S0009-2614(02)01788-8>
84. Kedžuch S., Noga J., Valiron P.: Mol. Phys. 2005, in press.
85. Helgaker T., Jensen H. J. Aa., Jørgensen P., Olsen J., Ruud K., Ågren H., Auer A. A., Bak K. L., Bakken V., Christiansen O., Coriani S., Dahle P., Dalskov E. K., Enevoldsen T., Fernandez B., Hättig C., Hald K., Halkier A., Heiberg H., Hettema H., Jonsson D., Kirpekar S., Kobayashi R., Koch H., Mikkelsen K. V., Norman P., Packer M. J., Pedersen T. B., Ruden T. A., Sanchez A., Saue T., Sauer S. P. A., Schimmelpfennig B., Sylvester-Hvid K. O., Taylor P. R., Vahtras O.: Dalton, a Molecular Electronic Structure Program, Release 1.2., 2001.
86. Stanton J. F., Gauss J., Watts J. D., Nooijen M., Oliphant N., Perera S. A., Szalay P. G., Lauderdale W. J., Kucharski S. A., Gwaltney S. R., Beck S., Balková A., Bernholdt D. E., Baeck K. K., Rozyczko P., Sekino H., Hober C., Bartlett R. J.: ACES II – A Program Product of the Quantum Theory Project, University of Florida; integral packages included are VMOL (Almlöf J., Taylor P. R.), VPROPS (Taylor P. R.), ABACUS (Helgaker T., Jensen H. J. A., Jørgensen P., Olsen J., Taylor P. R.).
87. Noga J., Klopper W., Helgaker T., Valiron P.: DIRCCR12-OS; Direct AO Integral Driven Explicitly Correlated Coupled Cluster Program System. www-laog.ujf-grenoble.fr/ ~valiron/ccr12, 2003.
88. Reis H., Papadopoulos M. G., Avramopoulos A.: J. Phys. Chem. A 2003, 107, 3907. <https://doi.org/10.1021/jp0222346>
89. Raptis S. G., Papadopoulos M. G., Sadlej A. J.: J. Chem. Phys. 1999, 111, 7904. <https://doi.org/10.1063/1.480125>
90. Bishop D. M.: J. Chem. Phys. 1991, 95, 5489. <https://doi.org/10.1063/1.461645>
91. Hättig C.: Mol. Phys. 1998, 94, 455. <https://doi.org/10.1080/002689798167962>