Collect. Czech. Chem. Commun.
2005, 70, 1082-1108
https://doi.org/10.1135/cccc20051082
A Case Study of State-Specific and State-Averaged Brueckner Equation-of-Motion Coupled-Cluster Theory: The Ionic-Covalent Avoided Crossing in Lithium Fluoride
Marcel Nooijen* and K. R. Shamasundar
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
References
1. H. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
2. D., Mukherjee P. K.: Chem. Phys. 1979, 39, 325.
<https://doi.org/10.1016/0301-0104(79)80153-6>
3. D., Mukhopadhyay S., Chauduri R., Mukherjee D.: Theor. Chim. Acta 1991, 80, 441.
<https://doi.org/10.1007/BF01119665>
4. H., Jensen H. J., Jorgensen P., Helgaker T.: J. Chem. Phys. 1990, 93, 3345.
<https://doi.org/10.1063/1.458815>
5. O., Koch H., Halkier A., Jorgensen P., Helgaker T., deMeras A. S.: J. Chem. Phys. 1996, 105, 6921.
<https://doi.org/10.1063/1.471985>
6. H., Christiansen O., Jorgensen P., deMeras A. M. S., Helgaker T.: J. Chem. Phys. 1997, 106, 1808.
<https://doi.org/10.1063/1.473322>
7. J. F., Bartlett R. J.: J. Chem. Phys. 1993, 98, 7029.
<https://doi.org/10.1063/1.464746>
8. R. J., Stanton J. F.: Rev. Comp. Chem. 1994, 5, 65.
<https://doi.org/10.1002/9780470125823.ch2>
9. J. C., Stanton J. F.: J. Chem. Phys. 1999, 111, 8275.
<https://doi.org/10.1063/1.480171>
10. J. A., McMahon R. J., Sattelmeyer K. W., Stanton J. F.: Astrophys. J. 2000, 544, 838.
<https://doi.org/10.1086/317251>
11. M., Snijders J. G.: Int. J. Quantum Chem., Quantum Chem. Symp. 1992, 26, 55.
<https://doi.org/10.1002/qua.560440808>
12. M., Snijders J. G.: Int. J. Quantum Chem. 1993, 48, 15.
<https://doi.org/10.1002/qua.560480103>
13. M., Bartlett R. J.: J. Chem. Phys. 1995, 102, 3629.
<https://doi.org/10.1063/1.468592>
14. I.: Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
15. I., Mukherjee D.: Phys. Rep. 1987, 151, 93.
<https://doi.org/10.1016/0370-1573(87)90073-1>
16. D., Pal S.: Adv. Quantum Chem. 1989, 20, 291.
<https://doi.org/10.1016/S0065-3276(08)60629-2>
17. D.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 20, 409.
<https://doi.org/10.1002/qua.560300737>
18. D.: Chem. Phys. Lett. 1986, 125, 207.
<https://doi.org/10.1016/0009-2614(86)87050-6>
19. L., Monkhorst H. J.: Phys. Rev. A 1985, 32, 725.
<https://doi.org/10.1103/PhysRevA.32.725>
20. U.: Theor. Chim. Acta 1991, 80, 427.
<https://doi.org/10.1007/BF01119664>
21. S. R., Kaldor U.: J. Chem. Phys. 1993, 99, 6773.
<https://doi.org/10.1063/1.465820>
22. L.: Chem. Phys. Lett. 1996, 255, 244.
<https://doi.org/10.1016/0009-2614(96)00400-9>
23. L., Malinowski P.: Phys. Rev. A 2000, 61, 062510.
<https://doi.org/10.1103/PhysRevA.61.062510>
24. L. Gryniakow J.: Collect. Czech. Chem. Commun. 2003, 68, 105.
<https://doi.org/10.1135/cccc20030105>
25. L.: J. Chem. Phys. 1998, 108, 9227.
<https://doi.org/10.1063/1.476377>
26. A., Eliav E., Kaldor U.: Chem. Phys. Lett. 1999, 313, 399.
<https://doi.org/10.1016/S0009-2614(99)01067-2>
27. A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2000, 113, 9905.
<https://doi.org/10.1063/1.1323258>
28. A., Eliav E., Kaldor U.: Int. J. Mod. Phys. B 2003, 17, 5335.
<https://doi.org/10.1142/S0217979203020466>
29. A., Eliav E., Ishikawa Y., Kaldor U.: J. Chem. Phys. 2004, 121, 6634.
<https://doi.org/10.1063/1.1788652>
30. M.: J. Chem. Phys. 1996, 104, 2638.
<https://doi.org/10.1063/1.470988>
31. M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6441.
<https://doi.org/10.1063/1.474000>
32. M., Bartlett R. J.: J. Chem. Phys. 1997, 106, 6449.
<https://doi.org/10.1063/1.473635>
33. M., Bartlett R. J.: J. Chem. Phys. 1997, 107, 6812.
<https://doi.org/10.1063/1.474922>
34. M.: Spectrochim. Acta, Part A 1999, 55, 539.
<https://doi.org/10.1016/S1386-1425(98)00261-3>
35. M., Lotrich V.: J. Chem. Phys. 2000, 113, 494.
<https://doi.org/10.1063/1.481828>
36. M.: J. Phys. Chem. A 2000, 104, 4553.
<https://doi.org/10.1021/jp993983z>
37. J. F., Gauss J.: Theor. Chim. Acta 1995, 91, 267.
38. J. F., Gauss J.: J. Chem. Phys. 1994, 101, 8938.
<https://doi.org/10.1063/1.468022>
39. J. F., Gauss J.: J. Chem. Phys. 1994, 100, 4695.
<https://doi.org/10.1063/1.466253>
40. S. R., Bartlett R. J., Nooijen M.: J. Chem. Phys. 1999, 111, 58.
<https://doi.org/10.1063/1.479361>
41. Wladyslawski M., Nooijen M. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 65. ACS, Washington 2002.
42. Wladyslawski M., Nooijen M.: Adv. Quantum Chem. 2005, in press.
43. O., Gauss J., Stanton J. F., Jorgensen P.: J. Chem. Phys. 1999, 111, 525.
<https://doi.org/10.1063/1.479332>
44. M., Perera S. A., Musial M., Bartlett R. J., Nooijen M., Lee J. S.: J. Chem. Phys. 2003, 119, 10713.
<https://doi.org/10.1063/1.1619952>
45. A., Nooijen M.: Int. J. Quantum Chem. 2003, 95, 643.
<https://doi.org/10.1002/qua.10723>
46. A., Chang H. H., Nooijen M.: J. Chem. Phys. 2004, 121, 2125.
<https://doi.org/10.1063/1.1768173>
47. A., Nooijen M.: Phys. Chem. Chem. Phys. 2005, 7, 1759.
<https://doi.org/10.1039/b500055f>
48. J. F., Sattelmeyer K. W., Gauss J., Allan M., Skalicky T., Bally T.: J. Chem. Phys. 2001, 115, 1.
<https://doi.org/10.1063/1.1381575>
49. Y. J., Sattelmeyer K. W., Stanton J. F., Gauss J.: J. Chem. Phys. 2004, 121, 5236.
<https://doi.org/10.1063/1.1780159>
50. M.: Int. J. Quantum Chem. 2003, 95, 768.
<https://doi.org/10.1002/qua.10724>
51. Hazra A., Nooijen M.: J. Chem. Phys. 2005, accepted.
52. A. I.: Chem. Phys. Lett. 2001, 350, 522.
<https://doi.org/10.1016/S0009-2614(01)01316-1>
53. A. I.: Chem. Phys. Lett. 2001, 338, 375.
<https://doi.org/10.1016/S0009-2614(01)00287-1>
54. A. I., Sherrill C. D.: J. Chem. Phys. 2002, 116, 3194.
<https://doi.org/10.1063/1.1445116>
55. L. V., Krylov A. I.: J. Chem. Phys. 2003, 118, 9614.
<https://doi.org/10.1063/1.1569845>
56. S. V., Krylov A. I.: J. Chem. Phys. 2004, 120, 175.
<https://doi.org/10.1063/1.1630018>
57. A. M. C., Shao Y., Krylov A. I.: J. Phys. Chem. A 2004, 108, 6581.
<https://doi.org/10.1021/jp049007j>
58. K., Piecuch P.: J. Chem. Phys. 2000, 113, 5644.
<https://doi.org/10.1063/1.1290609>
59. K., Piecuch P.: J. Chem. Phys. 2000, 113, 18.
<https://doi.org/10.1063/1.481769>
60. P., Kowalski K., Pimienta I. S. O., McGuire M. J.: Int. Rev. Phys. Chem. 2002, 21, 527.
<https://doi.org/10.1080/0144235021000053811>
61. U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1998, 110, 6171.
<https://doi.org/10.1063/1.478523>
62. U. S., Datta B., Bandyopadhyay B., Mukherjee D.: Adv. Quantum Chem. 1998, 30, 163.
<https://doi.org/10.1016/S0065-3276(08)60507-9>
63. U. S., Datta B., Mukherjee D.: Mol. Phys. 1998, 94, 157.
<https://doi.org/10.1080/00268979809482304>
64. U. S., Datta B., Mukherjee D.: J. Phys. Chem. A 1999, 103, 1822.
<https://doi.org/10.1021/jp9832995>
65. U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1999, 110, 6171.
<https://doi.org/10.1063/1.478523>
66. Chattopadhyay S., Mahapatra U. S., Ghosh P., Mukherjee D. in: Low-Lying Potential Energy Surfaces, ACS Symposium Series 828 (M. R. Hoffmann and K. G. Dyall, Eds), p. 109. ACS, Washington 2002.
67. S., Mahapatra U. S., Datta B., Mukherjee D.: Chem. Phys. Lett. 2002, 357, 426.
<https://doi.org/10.1016/S0009-2614(02)00534-1>
68. S., Pahari D., Mukherjee D., Mahapatra U. S.: J. Chem. Phys. 2004, 120, 5968.
<https://doi.org/10.1063/1.1650328>
69. I., Pittner J., Čársky P.: J. Chem. Phys. 2000, 112, 8779.
<https://doi.org/10.1063/1.481493>
70. J., Nachtigall P., Čársky P., Hubač I.: J. Phys. Chem. A 2001, 105, 1354.
<https://doi.org/10.1021/jp0032199>
71. J., Šmydke J., Čársky P., Hubač I.: J. Mol. Struct. (THEOCHEM) 2001, 547, 239.
<https://doi.org/10.1016/S0166-1280(01)00473-0>
72. J.: J. Chem. Phys. 2003, 118, 10876.
<https://doi.org/10.1063/1.1574785>
73. X. Z., Paldus J.: J. Chem. Phys. 1994, 101, 8812.
<https://doi.org/10.1063/1.468074>
74. X. Z., Paldus J.: J. Chem. Phys. 1995, 102, 8059.
<https://doi.org/10.1063/1.469005>
75. X. Z., Paldus J.: Int. J. Quantum Chem. 1998, 70, 65.
<https://doi.org/10.1002/(SICI)1097-461X(1998)70:1<65::AID-QUA4>3.0.CO;2-3>
76. B., Monkhorst H. J.: Phys. Rev. A 1981, 24, 1668.
<https://doi.org/10.1103/PhysRevA.24.1668>
77. N., Adamowicz L.: J. Chem. Phys. 1991, 94, 1229.
<https://doi.org/10.1063/1.460031>
78. N., Adamowicz L.: Int. Rev. Phys. Chem. 1993, 12, 339.
<https://doi.org/10.1080/01442359309353285>
79. P., Oliphant N., Adamowicz L.: J. Chem. Phys. 1993, 99, 1875.
<https://doi.org/10.1063/1.466179>
80. L., Malrieu J. P., Ivanov V. V.: J. Chem. Phys. 2000, 112, 10075.
<https://doi.org/10.1063/1.481649>
81. D. I., Ivanov V. V., Adamowicz L.: J. Chem. Phys. 2005, 122, 024108.
<https://doi.org/10.1063/1.1824897>
82. P., Kucharski S. A., Bartlett R. J.: J. Chem. Phys. 1999, 110, 6103.
<https://doi.org/10.1063/1.478517>
83. K., Piecuch P.: Chem. Phys. Lett. 2001, 344, 165.
<https://doi.org/10.1016/S0009-2614(01)00730-8>
84. X. Z., Paldus J.: J. Chem. Phys. 1997, 107, 6257.
<https://doi.org/10.1063/1.474289>
85. X. Z., Paldus J.: J. Chem. Phys. 1998, 108, 637.
<https://doi.org/10.1063/1.475425>
86. X. Z., Paldus J.: J. Chem. Phys. 1999, 110, 2844.
<https://doi.org/10.1063/1.477926>
87. X. Z., Paldus J.: J. Chem. Phys. 2000, 113, 9966.
<https://doi.org/10.1063/1.1323260>
88. X. Z., Paldus J.: Mol. Phys. 2000, 98, 1185.
<https://doi.org/10.1080/00268970050080546>
89. L., Grabowski I.: Chem. Phys. Lett. 1999, 300, 53.
<https://doi.org/10.1016/S0009-2614(98)01332-3>
90. L., Nooijen M.: Chem. Phys. Lett. 2000, 316, 501.
<https://doi.org/10.1016/S0009-2614(99)01209-9>
91. M. P., Andersson K., Roos B. O.: J. Phys. Chem. 1992, 96, 9204.
<https://doi.org/10.1021/j100202a026>
92. K., Malmqvist P. A., Roos B. O.: J. Chem. Phys. 1992, 96, 1218.
<https://doi.org/10.1063/1.462209>
93. B. O., Andersson K., Fulscher M. P., Malmqvist P. A., Serrano-Andres L., Pierloot K., Merchan M.: Adv. Chem. Phys. 1996, 93, 219.
<https://doi.org/10.1002/9780470141526.ch5>
94. H., Uchiyama R., Hirao K.: J. Comput. Chem. 2002, 23, 1166.
<https://doi.org/10.1002/jcc.10050>
95. Y., Hashimoto T., Nakano H., Hirao K.: Theor. Chem. Acc. 1999, 102, 49.
<https://doi.org/10.1007/s002140050472>
96. Y. K., Hashimoto T., Nakano H., Hirao K.: Chem. Phys. Lett. 1998, 295, 380.
<https://doi.org/10.1016/S0009-2614(98)00986-5>
97. M., Bartlett R. J.: J. Chem. Phys. 1996, 104, 2652.
<https://doi.org/10.1063/1.471010>
98. M., Lotrich V.: J. Mol. Struct. (THEOCHEM) 2001, 547, 253.
<https://doi.org/10.1016/S0166-1280(01)00475-4>
99. M.: Int. J. Mol. Sci. 2002, 3, 656.
<https://doi.org/10.3390/i3060656>
100. R. A., Dykstra C. E.: J. Chem. Phys. 1981, 74, 4544.
<https://doi.org/10.1063/1.441643>
101. N. C., Pople J. A., Headgordon M., Raghavachari K., Trucks G. W.: Chem. Phys. Lett. 1989, 164, 185.
<https://doi.org/10.1016/0009-2614(89)85013-4>
102. H., Kobayashi R., Jorgensen P.: Int. J. Quantum Chem. 1994, 49, 835.
<https://doi.org/10.1002/qua.560490607>
103. M., Lotrich V.: J. Chem. Phys. 2000, 113, 4549.
<https://doi.org/10.1063/1.1288912>
104. F., Malrieu J. P.: J. Phys. B 1984, 17, 1235.
<https://doi.org/10.1088/0022-3700/17/7/012>
105. F., Malrieu J. P.: J. Phys. B 1984, 17, 1259.
<https://doi.org/10.1088/0022-3700/17/7/013>
106. J., Malmqvist P. A., Roos B. O., Serrano-Andres L.: Chem. Phys. Lett. 1998, 288, 299.
<https://doi.org/10.1016/S0009-2614(98)00252-8>
107. J. P., Witek H. A.: J. Chem. Phys. 2000, 112, 3958.
<https://doi.org/10.1063/1.480947>
108. H., Nakatani J., Hirao K.: J. Chem. Phys. 2001, 114, 1133.
<https://doi.org/10.1063/1.1332992>
109. C., Dominguez-Ariza D., deGraaf C., Illas F.: J. Chem. Phys. 2000, 113, 9940.
<https://doi.org/10.1063/1.1323264>
110. O., Roder J., Hess B. A.: Mol. Phys. 2003, 101, 2019.
<https://doi.org/10.1080/0026897031000155625>
111. R., Binkley J. S., Seeger R., Pople J. A.: J. Chem. Phys. 1980, 72, 650.
<https://doi.org/10.1063/1.438955>
112. K. W., Schaefer H. F., Stanton J. F.: Chem. Phys. Lett. 2003, 378, 42.
<https://doi.org/10.1016/S0009-2614(03)01181-3>
113. P., Pulay P.: J. Mol. Struct. (THEOCHEM) 1984, 114, 31.
<https://doi.org/10.1016/S0022-2860(84)87198-7>
114. J., Davidson E. R.: Proc. Natl. Acad. Sci. U.S.A., Phys. Sci. 1980, 77, 4403.
<https://doi.org/10.1073/pnas.77.8.4403>
115. B. T., Snijders J. G.: Chem. Phys. Lett. 1988, 153, 69.
<https://doi.org/10.1016/0009-2614(88)80134-9>
116. J. M. O., Day O. W.: Int. J. Quantum Chem. 1987, 31, 871.
<https://doi.org/10.1002/qua.560310604>
117. R. C.: J. Chem. Phys. 1992, 96, 3718.
<https://doi.org/10.1063/1.461875>
118. R. C.: Int. J. Quantum Chem. 1994, 49, 649.
<https://doi.org/10.1002/qua.560490510>
119. D., Olsen J.: J. Chem. Phys. 1993, 98, 3999.
<https://doi.org/10.1063/1.464028>
120. J., Sundholm D.: Chem. Phys. Lett. 1998, 288, 282.
<https://doi.org/10.1016/S0009-2614(98)00302-9>
121. M. J.: Chem. Phys. 1999, 111, 8356.
122. P. G., Nooijen M., Bartlett R. J.: J. Chem. Phys. 1995, 103, 281.
<https://doi.org/10.1063/1.469641>

