Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2005, 70, 1196-1224
https://doi.org/10.1135/cccc20051196

Dipole Oscillator Strength Distributions and Properties for Methanol, Ethanol and Propan-1-ol and Related Dispersion Energies

Ashok Kumara, B. L. Jhanwarb and William J. Meathc,*

a Department of Physics, Ch. Charan Singh University, Meerut, 250004, India
b Department of Computer Application, Mody Institute of Technology and Science, Lakshmangarth, Distt. Sikar, Rajasthan, 332311, India
c Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada

Crossref Cited-by Linking

  • Benassi Enrico, Fan Haiyan, Ilolov Ahmadsho M., Ilolov Mamadsho: Synthesis of isoprene from 1-butanol and from diethyl ether in the presence of 3d-metal oxides nano-clusters acting as catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 698, 134556. <https://doi.org/10.1016/j.colsurfa.2024.134556>
  • Kooi Derk P., Weckman Timo, Gori-Giorgi Paola: Dispersion without Many-Body Density Distortion: Assessment on Atoms and Small Molecules. J. Chem. Theory Comput. 2021, 17, 2283. <https://doi.org/10.1021/acs.jctc.1c00102>
  • Gao Yuan, Zhu Wenguang, Ren Xinguo: Long-range behavior of a nonlocal correlation-energy density functional based on the random-phase approximation. Phys. Rev. B 2020, 101. <https://doi.org/10.1103/PhysRevB.101.035113>
  • Albertí Margarita, Amat Anna, Aguilar Antonio, Pirani Fernando: Methanol–methanol and methanol–water systems: the intermolecular interactions controlling the transition from small clusters to the liquid phase. Phys. Chem. Chem. Phys. 2017, 19, 16765. <https://doi.org/10.1039/C7CP02919E>
  • Faginas Lago N., Albertí M., Lombardi A., Pirani F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theor Chem Acc 2016, 135. <https://doi.org/10.1007/s00214-016-1914-9>
  • Mussard Bastien, Ángyán János G.: Local random phase approximation with projected oscillator orbitals. Theor Chem Acc 2015, 134. <https://doi.org/10.1007/s00214-015-1751-2>
  • Hohm U.: Experimental static dipole–dipole polarizabilities of molecules. Journal of Molecular Structure 2013, 1054-1055, 282. <https://doi.org/10.1016/j.molstruc.2013.10.003>
  • Cappelletti D., Candori P., Falcinelli S., Albertí M., Pirani F.: A molecular beam scattering investigation of methanol–noble gas complexes: Characterization of the isotropic potential and insights into the nature of the interaction. Chemical Physics Letters 2012, 545, 14. <https://doi.org/10.1016/j.cplett.2012.07.020>
  • Vydrov Oleg A., Van Voorhis Troy: Dispersion interactions from a local polarizability model. Phys. Rev. A 2010, 81. <https://doi.org/10.1103/PhysRevA.81.062708>
  • Bruun-Ghalbia S., Sauer S. P.A., Oddershede J., Sabin J. R.: Comparison of the directional characteristics of swift ion excitation for two small biomolecules: glycine and alanine. Eur. Phys. J. D 2010, 60, 71. <https://doi.org/10.1140/epjd/e2010-00034-7>
  • Tkatchenko Alexandre, DiStasio Robert A., Head-Gordon Martin, Scheffler Matthias: Dispersion-corrected Møller–Plesset second-order perturbation theory. The Journal of Chemical Physics 2009, 131. <https://doi.org/10.1063/1.3213194>
  • Kumar A, Jhanwar B L, Meath W: Dipole oscillator strength distributions, properties, and dispersion energies for ethylene, propene, and 1-butene. Can. J. Chem. 2007, 85, 724. <https://doi.org/10.1139/v07-057>