Collect. Czech. Chem. Commun.
     2005, 70, 1225-1271
  https://doi.org/10.1135/cccc20051225
  
The Spherical Tensor Gradient Operator
Ernst Joachim Weniger
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
References
1. Kline M.: Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford 1972.
2. Watson G. N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge 1966.
3.  E. J., Steinborn E. O.: J. Chem. Phys. 1983, 78, 6121.
<https://doi.org/10.1063/1.444574>
4.  P., Bartlett R. J.: Int. J. Quantum Chem. 1997, 62, 557.
<https://doi.org/10.1002/(SICI)1097-461X(1997)62:6<557::AID-QUA1>3.0.CO;2-V>
5.  E. W.: Proc. Math. Soc. London 1892, 24, 54.
6. Weniger E. J.: Ph.D. Thesis. Universität Regensburg, Regensburg 1982. A short abstract of this thesis was published in Zentralbl. Math. 1984, 523, 444.
7.  C., Kramer T., Kleber M.: Phys. Rev. A 2003, 67, 043601.
<https://doi.org/10.1103/PhysRevA.67.043601>
8.  E., Methfessel M., Krabs W., Schmidt P. C.: J. Math. Phys. 1998, 39, 3393.
<https://doi.org/10.1063/1.532437>
9.  M., van Schilfgaarde M., Casali R. A.: Lect. Notes Phys. 1999, 535, 114.
<https://doi.org/10.1007/3-540-46437-9_3>
10.  J., Steinborn E. O.: J. Comput. Phys. 1985, 61, 195.
<https://doi.org/10.1016/0021-9991(85)90082-8>
11.  J., Steinborn E. O.: Phys. Rev. A 1988, 38, 3857.
<https://doi.org/10.1103/PhysRevA.38.3857>
12.  A. W.: J. Math. Phys. 1983, 24, 1989.
<https://doi.org/10.1063/1.525957>
13.  A. W.: J. Math. Phys. 1984, 25, 698.
<https://doi.org/10.1063/1.526178>
14.  A. W.: J. Math. Phys. 1985, 26, 1540.
<https://doi.org/10.1063/1.526914>
15.  B. K.: Int. J. Quantum Chem. 1983, 24, 1.
<https://doi.org/10.1002/qua.560240102>
16. Novosadov B. K. in: Theory and Methods of Calculation of Molecular Spectra (I. A. Gribov and W. J. Orville-Thomas, Eds), pp. 596–625. Wiley, Chichester 1988.
17.  B. K.: J. Struct. Chem. 2001, 42, 355.
<https://doi.org/10.1023/A:1012444517593>
18.  B. K.: J. Struct. Chem. 2002, 43, 383.
<https://doi.org/10.1023/A:1020372612789>
19.  B. K.: J. Struct. Chem. 2002, 43, 390.
<https://doi.org/10.1023/A:1020324729627>
20.  B. K.: J. Mol. Struct. (THEOCHEM) 2003, 664–665, 55.
<https://doi.org/10.1016/S0166-1280(03)00559-1>
21.  H.: Chin. J. Phys. 1994, 32, 847.
22.  E. O., Weniger E. J.: Theor. Chim. Acta 1992, 83, 105.
<https://doi.org/10.1007/BF01113245>
23.  E. J.: Int. J. Quantum Chem. 2000, 76, 280.
<https://doi.org/10.1002/(SICI)1097-461X(2000)76:2<280::AID-QUA16>3.0.CO;2-C>
24.  E. J.: Int. J. Quantum Chem. 2002, 90, 92.
<https://doi.org/10.1002/qua.948>
25.  E. J., Grotendorst J., Steinborn E. O.: Phys. Rev. A 1986, 33, 3688.
<https://doi.org/10.1103/PhysRevA.33.3688>
26.  E. J., Steinborn E. O.: J. Math. Phys. 1983, 24, 2553.
<https://doi.org/10.1063/1.525649>
27.  E. J., Steinborn E. O.: J. Math. Phys. 1985, 26, 664.
<https://doi.org/10.1063/1.526604>
28.  E. J., Steinborn E. O.: J. Math. Phys. 1989, 30, 774.
<https://doi.org/10.1063/1.528396>
29.  B. I.: Phys. Rev. A 1990, 42, 1127.
<https://doi.org/10.1103/PhysRevA.42.1127>
30.  B. I.: Int. J. Quantum Chem. 2001, 81, 373.
<https://doi.org/10.1002/1097-461X(2001)81:6<373::AID-QUA1007>3.0.CO;2-3>
31.  B. I.: Phys. Rev. A 2002, 66, 032502.
<https://doi.org/10.1103/PhysRevA.66.032502>
32.  B. I.: J. Chem. Phys. 2003, 118, 1036.
<https://doi.org/10.1063/1.1528935>
33.  B. I.: Comput. Phys. Commun. 2005, 165, 18.
<https://doi.org/10.1016/j.cpc.2004.09.002>
34. Biedenharn L. C., Louck J. D.: Angular Momentum in Quantum Physics. Addison–Wesley, Reading (MS) 1981.
35.  B. F.: J. Math. Phys. 1978, 19, 2558.
<https://doi.org/10.1063/1.523640>
36.  F. D.: Nucl. Phys. A 1973, 212, 341.
<https://doi.org/10.1016/0375-9474(73)90568-X>
37.  S. N.: J. Aust. Math. Soc. B 1981, 22, 368.
<https://doi.org/10.1017/S0334270000002708>
38.  M. A.: J. Math. Phys. 1986, 27, 549.
<https://doi.org/10.1063/1.527205>
39. Hobson E. W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York 1965. Originally published by Cambridge University Press, Cambridge 1931.
40. Avery J.: Hyperspherical Harmonics – Applications in Quantum Theory. Kluwer, Dordrecht 1989.
41. Avery J.: Hyperspherical Harmonics and Generalized Sturmians. Kluwer, Dordrecht 2000.
42. Judd B. R.: Angular Momentum Theory for Diatomic Molecules. Academic Press, New York 1975.
43.  E. J.: J. Math. Phys. 1985, 26, 276.
<https://doi.org/10.1063/1.526970>
44.  F., Matsuoka O.: Int. J. Quantum Chem. 1998, 66, 273.
<https://doi.org/10.1002/(SICI)1097-461X(1998)66:4<273::AID-QUA2>3.0.CO;2-S>
45.  L.-Y., Moharerrzadeh M.: J. Chem. Phys. 1998, 108, 5230.
<https://doi.org/10.1063/1.475960>
46.  L.-Y., Moharerrzadeh M.: Int. J. Quantum Chem. 1999, 73, 265.
<https://doi.org/10.1002/(SICI)1097-461X(1999)73:3<265::AID-QUA1>3.0.CO;2-7>
47.  L.-Y., Moharerrzadeh M.: J. Mol. Struct. (THEOCHEM) 2001, 536, 263.
<https://doi.org/10.1016/S0166-1280(00)00704-1>
48.  G.: J. Phys. B 1979, 12, 1063.
<https://doi.org/10.1088/0022-3700/12/7/010>
49.  G.: Theor. Chim. Acta 1980, 54, 323.
<https://doi.org/10.1007/BF00552466>
50.  A., Carrravetta V.: Phys. Rev. A 1992, 45, 4438.
<https://doi.org/10.1103/PhysRevA.45.4438>
51.  A., Salvetti O.: Int. J. Quantum Chem. 1993, 48, 257.
<https://doi.org/10.1002/qua.560480407>
52.  N., Matsuoka O.: Int. J. Quantum Chem. 1992, 42, 751.
<https://doi.org/10.1002/qua.560420415>
53.  A., Staufer M., Birkenheuer U., Igoshine V., Rösch N.: J. Quantum Chem. 2000, 79, 209.
<https://doi.org/10.1002/1097-461X(2000)79:4<209::AID-QUA2>3.0.CO;2-J>
54.  K.: J. Chem. Phys. 1998, 109, 881.
<https://doi.org/10.1063/1.476628>
55.  K.: J. Chem. Phys. 1999, 111, 4913.
<https://doi.org/10.1063/1.479785>
56.  K.: J. Chem. Phys. 2000, 113, 7818.
<https://doi.org/10.1063/1.1316013>
57.  K.: J. Comput. Chem. 2002, 23, 378.
<https://doi.org/10.1002/jcc.10016>
58.  K.: J. Comput. Chem. 2003, 24, 1874.
<https://doi.org/10.1002/jcc..10348>
59.  J., Lin C. D.: J. Phys. B 1997, 30, 2529.
<https://doi.org/10.1088/0953-4075/30/11/007>
60.  J., Lin C. D.: J. Phys. B 1997, 30, 2549.
<https://doi.org/10.1088/0953-4075/30/11/008>
61.  D. K.: J. Chem. Phys. 1979, 71, 917.
<https://doi.org/10.1063/1.438381>
62.  O.: J. Chem. Phys. 1992, 92, 4364.
<https://doi.org/10.1063/1.457744>
63.  O.: Can. J. Chem. 1992, 70, 388.
<https://doi.org/10.1139/v92-055>
64.  O.: J. Chem. Phys. 1998, 108, 1063.
<https://doi.org/10.1063/1.475468>
65.  O.: J. Mol. Struct. (THEOCHEM) 1998, 451, 35.
<https://doi.org/10.1016/S0166-1280(98)00157-2>
66.  O.: Mol. Phys. 2003, 101, 33.
<https://doi.org/10.1080/00268970210158704>
67. Saunders V. R. in: Methods in Computational Molecular Physics (G. Diercksen and S. Wilson, Eds), pp. 1–36. Reidel, Dordrecht 1983.
68.  F. P., Blanchard C. H.: J. Chem. Phys. 1962, 36, 1112.
<https://doi.org/10.1063/1.1732673>
69.  M.: J. Chem. Phys. 1963, 39, 853.
<https://doi.org/10.1063/1.1734348>
70. Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York 1975.
71.  O.: Chem. Phys. Lett. 1969, 3, 671.
<https://doi.org/10.1016/0009-2614(69)87006-5>
72. Shavitt I. in: Methods in Computational Physics (B. Alder, S. Fernbach and M. Rotenberg, Eds), Vol 2, pp. 1–45. Academic Press, New York 1963.
73.  E., Steinborn E. O.: Phys. Rev. A 1978, 18, 1.
<https://doi.org/10.1103/PhysRevA.18.1>
74. Homeier H. H. H.: Ph.D. Thesis, Universität Regensburg 1990. Published by S. Roderer Verlag, Regensburg 1990.
75. Magnus W., Oberhettinger F., Soni R. P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York 1966.
76.  E. O., Filter E.: Theor. Chim. Acta 1975, 38, 273.
<https://doi.org/10.1007/BF00963467>
77.  E. J., Steinborn E. O.: Phys. Rev. A 1983, 28, 2026.
<https://doi.org/10.1103/PhysRevA.28.2026>
78. Grosswald E.: Bessel Polynomials. Springer, Berlin 1978.
79. Baker G. A., Jr., Graves-Morris P.: Padé Approximants, 2nd ed. Cambridge University Press, Cambridge 1996.
80.  H.: Ann. Sci. Ec. Norm. Sup. 1892, 9, 1.
81.  A. W.: Int. J. Quantum Chem. 1984, 25, 941.
<https://doi.org/10.1002/qua.560250603>
82.  E., Steinborn E. O.: J. Math. Phys. 1978, 19, 79.
<https://doi.org/10.1063/1.523517>
83.  E. O., Homeier H. H. H., Fernández Rico J., Ema I., López R., Ramírez G.: J. Mol. Struct. (THEOCHEM) 1999, 490, 201.
<https://doi.org/10.1016/S0166-1280(99)00099-8>
84.  E. O., Homeier H. H. H., Ema I., López R., Ramírez G.: Int. J. Quantum Chem. 2000, 76, 244.
<https://doi.org/10.1002/(SICI)1097-461X(2000)76:2<244::AID-QUA13>3.0.CO;2-T>
85.  A.: J. Inst. Math. Appl. 1980, 26, 9.
<https://doi.org/10.1093/imamat/26.1.1>
86.  D., Sidi A.: Appl. Math. Comput. 1981, 9, 175.
<https://doi.org/10.1016/0096-3003(81)90028-X>
87.  L., Safouhi H.: J. Phys. A 2003, 36, 11267.
<https://doi.org/10.1088/0305-4470/36/44/007>
88.  L., Safouhi H.: J. Phys. A 2003, 36, 11791.
<https://doi.org/10.1088/0305-4470/36/47/007>
89.  L., Safouhi H.: J. Phys. A 2004, 37, 3393.
<https://doi.org/10.1088/0305-4470/37/10/006>
90.  L., Safouhi H., Hoggan P.: Int. J. Quantum Chem. 2004, 99, 221.
<https://doi.org/10.1002/qua.10853>
91.  H.: J. Comput. Phys. 2000, 165, 473.
<https://doi.org/10.1006/jcph.2000.6621>
92.  H.: J. Phys. A 2001, 34, 881.
<https://doi.org/10.1088/0305-4470/34/4/314>
93.  H.: J. Phys. A 2001, 34, 2801.
<https://doi.org/10.1088/0305-4470/34/13/311>
94.  H.: J. Math. Chem. 2001, 29, 213.
<https://doi.org/10.1023/A:1010994517423>
95.  H.: J. Comput. Phys. 2002, 176, 1.
<https://doi.org/10.1006/jcph.2001.6925>
96.  H.: J. Phys. A 2002, 35, 9685.
<https://doi.org/10.1088/0305-4470/35/45/314>
97.  H., Hoggan P. E.: Int. J. Quantum Chem. 2001, 84, 580.
<https://doi.org/10.1002/qua.1412>
98.  H., Hoggan P. E.: Int. J. Quantum Chem. 2002, 90, 119.
<https://doi.org/10.1002/qua.962>
99.  H., Hoggan P. E.: Mol. Phys. 2003, 101, 19.
<https://doi.org/10.1080/0026897021000026809>
100. Dirac P. A. M.: The Principles of Quantum Mechanics, 4th ed. Clarendon Press, Oxford 1958.
101. Schwartz L.: Théorie des Distributions, 2nd ed. Hermann, Paris 1966.
102. Jackson J. D.: Classical Electrodynamics, 2nd ed. Wiley, New York 1975.
103.  E. G. P.: J. Math. Phys. 1978, 19, 1962.
<https://doi.org/10.1063/1.523927>
104. Gel’fand I. M., Shilov G. E.: Generalized Functions. I. Properties and Operations. Academic Press, New York 1964.
105.  H.: Proc. Phys.-Math. Soc. Jpn. 1935, 17, 48.
106. Arfken G. B.: Mathematical Methods for Physicists, 3rd ed. Academic Press, Orlando 1985.
107. Jones M. N.: Spherical Harmonics and Tensors for Classical Field Theory. Wiley, New York 1985.
108. Stone A. J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford 1996.
109. Weniger E. J.: M.S. Thesis. Universität Regensburg, Regensburg 1977.
110.  E. O., Weniger E. J.: Int. J. Quantum Chem. Symp. 1977, 11, 509.
111.  H. H. H., Weniger E. J., Steinborn E. O.: Int. J. Quantum Chem. 1992, 44, 405.
<https://doi.org/10.1002/qua.560440308>
112.  E., Steinborn E. O.: J. Math. Phys. 1980, 21, 2725.
<https://doi.org/10.1063/1.524390>
113.  E. J., Steinborn E. O.: Phys. Rev. A 1984, 29, 2268.
<https://doi.org/10.1103/PhysRevA.29.2268>
114. Varshalovich D. A., Moskalev A. N., Khersonskii V. K.: Quantum Theory of Angular Momentum. World Scientific, Singapore 1988.
115. Knopp K.: Theorie und Anwendung der unendlichen Reihen. Springer, Berlin 1964.
116.  J., Weniger E. J., Steinborn E. O.: Phys. Rev. A 1986, 33, 3706.
<https://doi.org/10.1103/PhysRevA.33.3706>
117.  E. O., Weniger E. J.: J. Mol. Struct. (THEOCHEM) 1990, 210, 71.
<https://doi.org/10.1016/0166-1280(90)80026-K>
118.  E. J., Grotendorst J., Steinborn E. O.: Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 19, 181.
119.  E. J., Steinborn E. O.: J. Chem. Phys. 1987, 87, 3709.
<https://doi.org/10.1063/1.452975>
120.  E. J., Steinborn E. O.: Theor. Chim. Acta 1988, 73, 323.
<https://doi.org/10.1007/BF00527739>
121.  E. J.: Comput. Phys. Rep. 1989, 10, 189. Los Alamos Preprint math-ph/0306302, http://arXiv.org.
<https://doi.org/10.1016/0167-7977(89)90011-7>
122.  C. M., Weniger E. J.: J. Math. Phys. 2001, 42, 2167.
<https://doi.org/10.1063/1.1362287>
123.  E. J.: J. Comput. Appl. Math. 2000, 122, 329. Reprinted in: Numerical Analysis 2000 (C. Brezinski, Ed.), Vol. 2, pp. 329–356. Elsevier, Amsterdam 2000.
<https://doi.org/10.1016/S0377-0427(00)00363-0>
124.  E. J.: Numer. Algor. 2003, 33, 499.
<https://doi.org/10.1023/A:1025517617217>
125.  E. J.: J. Math. Phys. 2004, 45, 1209.
<https://doi.org/10.1063/1.1643787>
126.  E. J., Kirtman B.: Comput. Math. Appl. 2003, 45, 189.
<https://doi.org/10.1016/S0898-1221(03)80014-7>
127. Condon E. U., Shortley G. H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge 1970.
128. Condon E. U., Odabasi H.: Atomic Structure. Cambridge University Press, Cambridge 1980.
129.  E. O., Ruedenberg K.: Adv. Quantum Chem. 1973, 7, 1.
<https://doi.org/10.1016/S0065-3276(08)60558-4>
130. Normand J.-M.: A Lie Group: Rotations in Quantum Mechanics. North-Holland, Amsterdam 1980.
131.  J. A.: Philos. Trans. R. Soc. London, Ser. A 1929, 228, 151.
<https://doi.org/10.1098/rsta.1929.0004>
132.  E. J., Steinborn E. O.: Comput. Phys. Commun. 1982, 25, 149.
<https://doi.org/10.1016/0010-4655(82)90031-5>
133.  K., Gordon R. G.: J. Math. Phys. 1975, 16, 1961.
<https://doi.org/10.1063/1.522426>
134.  K., Gordon R. G.: Comput. Phys. Commun. 1976, 11, 269.
<https://doi.org/10.1016/0010-4655(76)90058-8>
135.  H. H. H., Steinborn E. O.: J. Mol. Struct. (THEOCHEM) 1996, 368, 31.
<https://doi.org/10.1016/S0166-1280(96)90531-X>
136.  Y.-L.: Math. Comput. 1996, 65, 1601.
<https://doi.org/10.1090/S0025-5718-96-00774-0>
137.  Y.-L.: J. Comput. Appl. Math. 1997, 85, 53.
<https://doi.org/10.1016/S0377-0427(97)00128-3>
138.  Y.-L.: J. Comput. Phys. 1998, 139, 137.
<https://doi.org/10.1006/jcph.1997.5867>
139.  D.: J. Phys. A 1998, 31, 7157.
<https://doi.org/10.1088/0305-4470/31/34/017>
140.  H. A., Alassar R. S.: Appl. Math. Lett. 1999, 12, 101.
<https://doi.org/10.1016/S0893-9659(98)00180-3>


