Collect. Czech. Chem. Commun.
2005, 70, 1272-1314
https://doi.org/10.1135/cccc20051272
Assessment of the Direct Generalized Bloch Approach B0: Application to the Li and Be Atoms and the Molecules LiH, BeH, and the Phenolate Anion
Holger Meissner
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
References
1. Langhoff S. R. (Ed.): Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Kluwer Academic, Dordrecht Netherlands 1995; and references therein.
2. Bartlett R. J. in: Modern Electronic Structure Theory, Part I (D. R. Yarkony, Ed.), p. 1047. World Scientific, Singapore 1995.
3. Bartlett R. J. (Ed.): Recent Advances in Computational Chemistry, Vol. 3. World Scientific, Singapore 1997.
4a. Adv. Chem. Phys. 1999, 110, 1.
< J., Li X.: https://doi.org/10.1002/9780470141694.ch1>
4b. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, Ed.), Vol. 2, Part 3, Chap. 19, p. 272. J. Wiley, Chichester 2003.
5. Piecuch P., Kowalski K. in: Computational Chemistry: Reviews of Current Trends (J. Leszcynski, Ed.), Vol. 5, p. 1. World Scientific, Singapore 2000.
6a. Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
I.:
6b. Lindren I., Morrison J. (Eds): Atomic Many-Body Theory, 2nd ed. Springer Verlag, Berlin 1986.
6c. Phys. Rep. 1987, 151, 93.
< I., Mukherjee D.: https://doi.org/10.1016/0370-1573(87)90073-1>
6d. Adv. Quantum Chem. 1989, 20, 292.
D., Pal S.:
7. Phys. Rev. A 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
8. J. Chem. Phys. 2004, 120, 5890; and references therein.
< X., Paldus J.: https://doi.org/10.1063/1.1650327>
9. J. Chem. Phys. 2001, 115, 5759.
< X., Paldus J.: https://doi.org/10.1063/1.1398088>
10a. J. Chem. Phys. 1996, 104, 4699.
< P., Kondo A. E., Špirko V., Paldus J.: https://doi.org/10.1063/1.471164>
10b. Int. J. Quantum Chem. 2000, 80, 782.
< H., Paldus J.: https://doi.org/10.1002/1097-461X(2000)80:4/5<782::AID-QUA26>3.0.CO;2-3>
11a. Int. J. Quantum Chem. 1997, 63, 257.
< H., Steinborn E. O.: https://doi.org/10.1002/(SICI)1097-461X(1997)63:1<257::AID-QUA27>3.0.CO;2-7>
11b. J. Mol. Struct. (THEOCHEM) 1998, 433, 119.
< H., Steinborn E. O.: https://doi.org/10.1016/S0166-1280(98)00018-9>
11c. Int. J. Quantum Chem. 2000, 80, 782.
< H., Paldus J.: https://doi.org/10.1002/1097-461X(2000)80:4/5<782::AID-QUA26>3.0.CO;2-3>
11d. J. Chem. Phys. 2000, 113, 2594.
< H., Paldus J.: https://doi.org/10.1063/1.1305321>
11e. J. Chem. Phys. 2000, 113, 2612.
< H., Paldus J.: https://doi.org/10.1063/1.1305322>
11f. J. Chem. Phys. 2000, 113, 2622.
< H., Paldus J.: https://doi.org/10.1063/1.1305323>
11g. J. Mol. Struct. (THEOCHEM) 2001, 547, 171.
< H., Ema I.: https://doi.org/10.1016/S0166-1280(01)00469-9>
11h. Collect. Czech. Chem. Commun. 2001, 66, 1164.
< H., Paldus J.: https://doi.org/10.1135/cccc20011164>
11i. J. Chem. Phys. 2003, 119, 4126.
< H.: https://doi.org/10.1063/1.1592151>
12. J. Phys. Chem. A 2000, 104, 2939.
< Z., Martin Ch. H., Birge R., Freed K. F.: https://doi.org/10.1021/jp992615s>
13. Paldus J. in: Relativistic and Electron Correlation Effects in Molecules and Solids, Vol. 318, NATO Advanced Study Institute, Series B: Physics (G. L. Malli, Ed.), p. 207. Plenum Press, New York 1994.
14. Theor. Chim. Acta 1994, 89, 13.
< J., Planelles J.: https://doi.org/10.1007/BF01167279>
15a. J. Chem. Phys. 1997, 107, 6257.
< X., Paldus J.: https://doi.org/10.1063/1.474289>
15b. J. Chem. Phys. 1998, 108, 637.
< X., Paldus J.: https://doi.org/10.1063/1.475425>
15c. J. Chem. Phys. 1999, 110, 2844.
< X., Paldus J.: https://doi.org/10.1063/1.477926>
15d. Int. J. Quantum Chem. 2000, 77, 281.
< X., Paldus J.: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<281::AID-QUA25>3.0.CO;2-D>
16. J. Chem. Phys. 1999, 110, 11708.
< G., Planelles J., Malrieu J.-P., Paldus J.: https://doi.org/10.1063/1.479116>
17. Int. J. Quantum Chem. 2000, 76, 83.
< N., Schmalz T. G.: https://doi.org/10.1002/(SICI)1097-461X(2000)76:1<83::AID-QUA8>3.0.CO;2-4>
18. Davidson E. R.: The World of Quantum Chemistry. Reidel, Dordrecht 1974.
19. Int. J. Quantum Chem. 1974, 8, 61.
< R., Davidson E. R.: https://doi.org/10.1002/qua.560080106>
20. Phys. Rev. 1955, 100, 36.
< K. A.: https://doi.org/10.1103/PhysRev.100.36>
21. Chem. Phys. Lett. 1977, 52, 403.
< E. R., Silver D. W.: https://doi.org/10.1016/0009-2614(77)80475-2>
22. Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 149.
J. A., Seeger R., Krishnan R.:
23. J. Chem. Phys. 1994, 101, 3018.
< W., Diercksen G. H. F.: https://doi.org/10.1063/1.467615>
24. Chem. Phys. Lett. 1988, 146, 204.
< L.: https://doi.org/10.1016/0009-2614(88)87431-1>
25. J. Phys. Chem. 1996, 100, 6288.
< L., Szalay P. G.: https://doi.org/10.1021/jp952840j>
26. Herzberg G.: Molecular Spectra and Molecular Structure, I. Diatomic Molecules, p. 66. Van Nostrand, New York 1959.
27. Hurley A. C.: Introduction to Electron Theory of Small Molecules, p. 6. Academic Press, London 1976.
28. LEVEL 6.1; LeRoy R. J.: A Computer Program Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, and Calculating Various Expectation Values and Matrix Elements. University of Waterloo Chemical Physics Research Report CP-555R, Waterloo, Ontario, Canada 1996.
29. J. Chem. Phys. 1965, 43, S34.
< H. D., Roothaan C. C. J.: https://doi.org/10.1063/1.1701512>
30. J. Comput. Chem. 1990, 11, 82.
< H. A., Stewart J. J. P., Dieter K. M.: https://doi.org/10.1002/jcc.540110110>
31. GAMESS; J. Comput. Chem. 1993, 14, 1347.
< M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A., Jr.: https://doi.org/10.1002/jcc.540141112>
32a. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A., and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information: Theor. Chim. Acta 1994, 89, 13.
32b. J. Chem. Phys. 1989, 90, 1007.
< T. H., Jr.: https://doi.org/10.1063/1.456153>
33. Can. J. Chem. 1996, 74, 918.
< J., Li X.: https://doi.org/10.1139/v96-101>
34. Phys. Rev. A 1974, 10, 1131.
< R. W., Schwarz H. L., Miller T. M., Bederson B.: https://doi.org/10.1103/PhysRevA.10.1131>
35. Phys. Rev. A 1991, 43, 5804.
< O., Bunge C. F.: https://doi.org/10.1103/PhysRevA.43.5804>
36. J. Chem. Phys. 1976, 65, 5141.
< C. E., Schaefer III H. F., Meyer W.: https://doi.org/10.1063/1.433055>
37. Huber K. P., Herzberg G.: Constants of Diatomic Molecules (data prepared by J. W. Gallagher and R. D. Johnson III) in NIST Chemistry WebBook, NIST Standard Reference Database, No. 69 (W. G. Mallard and P. J. Linstrom, Eds). National Institute of Standards and Technology, Gaithersburg, MD 20899, U.S.A. November 1999 (http://webbook.nist.gov).
38. Nelson R. D., Jr., Lide D. R., Maryott A. A.: Selected Values of Electric Dipole Moments for Molecules in the Gas Phase. NSRDS-NBS10 1967.
39. Gaydon A. G.: Dissociation Energies and Spectra of Diatomic Molecules. Chapman and Hall Ltd., London 1968.
40. J. Phys. Chem. Ref. Data 1993, 22, 87.
< W. C., Zemke W. T.: https://doi.org/10.1063/1.555936>
41. J. Chem. Phys. 2003, 118, 2470.
< X., Paldus J.: https://doi.org/10.1063/1.1535438>
42. J. Chem. Phys. 1981, 74, 2361.
< H., Langhoff S. R.: https://doi.org/10.1063/1.441355>
43. J. Chem. Phys. 1992, 97, 1144.
< A., Gadéa F. X.: https://doi.org/10.1063/1.463242>
44. J. Mol. Spectrosc. 1998, 188, 14.
< M., Zhang K. Q., Guo B., Bernath P. F.: https://doi.org/10.1006/jmsp.1997.7430>
45. Int. J. Quantum Chem., Quantum Chem. Symp. 1971, 5, 95.
< R. S.: https://doi.org/10.1002/qua.560050812>
46. J. Chem. Phys. 1995, 102, 2013; and references therein.
< X., Paldus J.: https://doi.org/10.1063/1.468766>