Collect. Czech. Chem. Commun.
2006, 71, 91-106
https://doi.org/10.1135/cccc20060091
The Autocatalytic Oxidation of Iodine with Hydrogen Peroxide in Relation to the Bray-Liebhafsky Oscillatory Reaction
Anna Olexová, Marta Mrákavová, Milan Melicherčík and Ľudovít Treindl*
Department of Physical and Theoretical Chemistry, Comenius University, 842 15 Bratislava, Slovak Republic
References
1. W. C.: J. Am. Chem. Soc. 1921, 43, 1262.
<https://doi.org/10.1021/ja01439a007>
2. W. C., Liebhafsky H. A.: J. Am. Chem Soc. 1931, 53, 38.
<https://doi.org/10.1021/ja01352a006>
3. I., Nakajima T., Liebhafsky H. A.: Faraday Symp. Chem. Soc. 1974, 9, 55.
<https://doi.org/10.1039/fs9740900055>
4. G.: J. Chem. Phys. 1974, 71, 689.
5. K. R., Noyes R. M.: J. Am. Chem. Soc. 1976, 98, 4345.
<https://doi.org/10.1021/ja00431a001>
6. S.: J. Phys. Chem. 1987, 91, 1707.
<https://doi.org/10.1021/j100291a007>
7. L., Schmitz G.: J. Chem. Soc., Faraday Trans. 1992, 88, 2343.
<https://doi.org/10.1039/ft9928802343>
8. L., Noyes R. M.: J. Phys. Chem. 1993, 97, 11354.
<https://doi.org/10.1021/j100145a039>
9. G., Beck M. T.: J. Phys. Chem. 1994, 98, 5188.
<https://doi.org/10.1021/j100071a004>
10. R. M., Kalachev L. V., Field R. J.: J. Phys. Chem. 1995, 99, 3514.
<https://doi.org/10.1021/j100011a018>
11. J., Melicherčík M., Olexová A., Treindl L.: J. Phys. Chem. A 1999, 103, 4690.
<https://doi.org/10.1021/jp9844866>
12. M., Olexová A., Treindl L.: J. Mol. Catal. A: Chem. 1997, 127, 43.
<https://doi.org/10.1016/S1381-1169(97)00123-4>
13. E., Funck A.: Z. Phys. Chem. 1927, 126, 1.
<https://doi.org/10.1515/zpch-1927-12602>
14. V., Marko J., Vermeersch G., Aubry J. M.: Inorg. Chem. 1995, 34, 4950.
<https://doi.org/10.1021/ic00124a007>
15. L. J., Horvath I., Galbacs Z. M.: Transition Met. Chem. (London) 1989, 14, 90.
<https://doi.org/10.1007/BF01040598>
16. J. M., Cazin B.: Inorg. Chem. 1998, 27, 2013.
<https://doi.org/10.1021/ic00285a001>
17. M., Treindl L.: React. Kinet. Catal. Lett. 1998, 63, 297.
<https://doi.org/10.1007/BF02475402>
18. G.: PhysChemChemPhys 1999, 1, 4605.
19. G.: Phys. Chem. Chem. Phys. 2001, 3, 4741.
<https://doi.org/10.1039/b106505j>
20. P., Kissimonová K., Adamčíková Ľ.: J. Phys. Chem. A 2000, 104, 3958.
<https://doi.org/10.1021/jp993156y>
21. J. A. A., Field R. J., Lyons N. J.: J. Phys. Chem. A 2000, 104, 5265.
<https://doi.org/10.1021/jp000271w>
22. B., Vřešťál J.: J. Phys. Chem. A 2002, 106, 1228.
<https://doi.org/10.1021/jp012880p>
23. S., Székely G., Beck M. T.: J. Phys. Chem. 2003, 107, 73.
<https://doi.org/10.1021/jp026334n>
24. D., Begovic N., Yukojevic V.: J. Phys. Chem. A 1998, 102, 6887.
<https://doi.org/10.1021/jp9808025>
25. S. C., Punjabi P. B., Chobisa C. S., Mangal N., Bhardwajm R.: Asian Chem. Rev. 1990, 1, 106.
26. F., Brummer J. G.: J. Phys. Chem. Ref. Data 1981, 10, 809.
<https://doi.org/10.1063/1.555655>
27. J. G., Stanbro W. D.: J. Photochem. 1984, 25, 545.
<https://doi.org/10.1016/0047-2670(84)87054-9>
28. S., Kolar Anic L., Koros E.: React. Kinet. Catal. Lett. 1997, 61, 111.
<https://doi.org/10.1007/BF02477521>
29. H. A., Bielski B. H. J.: J. Phys. Chem. 1986, 90, 1445.
<https://doi.org/10.1021/j100398a045>
30. D. R.: Chem. Rev. 1971, 71, 395.
<https://doi.org/10.1021/cr60272a004>
31. J. M.: J. Am. Chem. Soc. 1985, 107, 5844.
<https://doi.org/10.1021/ja00307a002>
32. P. N., Sedov V. P., Isupov V. K.: Radiokhimiya 1988, 3, 421.
33. D. R., Vukojevic V. B.: J. Phys. Chem. 2002, 106, 5618.
<https://doi.org/10.1021/jp020086d>

