Collect. Czech. Chem. Commun.
2006, 71, 443-531
https://doi.org/10.1135/cccc20060443
The World of Non-Covalent Interactions: 2006
Pavel Hobzaa,*, Rudolf Zahradníkb and Klaus Müller-Dethlefsc,*
a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague 6, Czech Republic
b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague 8, Czech Republic
c The Photon Science Institute, The University of Manchester, Simon Building, Manchester M13 9PL, United Kingdom
References
1. van der Waals J. D.: Ph.D. Thesis. Leiden 1873. Quoted according to Brown L. M., Pais A., Pippard B. (Eds): Twentieth Century Physics, Vol. I. American Institute of Physics Press, New York 1995.
2. Z. Phys. Chem., B 1930, 11, 222.
F.:
3. Acta Physicochim. 1935, 2, 273.
H.:
4. Hirschfelder J. O., Curtiss C. F., Bird R. B.: Molecular Theory of Gases and Liquids. Wiley, New York 1954.
5. Hobza P., Zahradník R.: Intermolecular Complexes. Elsevier, Amsterdam 1988.
6a. Chem. Rev. 2000, 100, 143.
< K., Hobza P.: https://doi.org/10.1021/cr9900331>
6b. Van der Waals Complexes I, II, III: Chem. Rev. 1988, 88; 1994, 94; 2000, 100..
7. Primas H.: Chemistry, Quantum Mechanics, and Reductionism, p. 344. Springer-Verlag, Berlin 1981.
8a. J. Am. Chem. Soc. 1931, 53, 1367.
< L.: https://doi.org/10.1021/ja01355a027>
8b. Pauling L.: The Nature of the Chemical Bond. Cornell University Press, Ithaca 1939.
9a. Z. Naturforsch., A 1984, 39, 1089.
< K., Sander M., Schlag E. W.: https://doi.org/10.1515/zna-1984-1112>
9b. Chem. Phys. Lett. 1984, 112, 291.
< K., Sander M., Schlag E. W.: https://doi.org/10.1016/0009-2614(84)85743-7>
9c. Müller-Dethlefs K., Sander M., Chewter L. A. in: Laser Spectroscopy VII (T. W. Hänsch and Y. R. Shen, Eds), p. 118. Springer Verlag, Berlin 1985.
9d. Chem. Phys. Lett. 1988, 152, 119.
< G., Habenicht W., Müller-Dethlefs K., Schlag E. W.: https://doi.org/10.1016/0009-2614(88)87340-8>
9e. J. Chem. Phys. 1991, 95, 4809.
< W., Reiser G., Müller-Dethlefs K.: https://doi.org/10.1063/1.461699>
9f. J. Chem. Phys. 1991, 95, 4822.
< K.: https://doi.org/10.1063/1.461700>
10. Chem. Phys. Lett. 1999, 315, 103.
< C. E. H., Haines S. R., Müller-Dethlefs K.: https://doi.org/10.1016/S0009-2614(99)01193-8>
11. Chem. Rev. 2000, 100, 3999.
< C. E. H., Müller-Dethlefs K.: https://doi.org/10.1021/cr990060r>
12a. J. Chem. Phys. 1999, 110, 11264.
< W., Schaeffer M. W., Lee S., Chung J. S., Felker P. M.: https://doi.org/10.1063/1.479067>
12b. J. Chem. Phys. 2003, 119, 12956.
< S., Chung J. S., Felker P. M., Cacheiro J. L., Fernandez B., Pedersen T. B., Koch H.: https://doi.org/10.1063/1.1628217>
12c. J. Chem. Phys. 2003, 118, 1230.
< S., Romascan J., Felker P. M., Pedersen T. B., Fernandez B., Koch H.: https://doi.org/10.1063/1.1527925>
12d. J. Chem. Phys. 2003, 118, 9157.
< C., Henseler D., Leutwyler S., Connell L. L., Felker P. M.: https://doi.org/10.1063/1.1568073>
13a. Chem. Rev. 2005, 105, 355.
< B. C., Dixon D. A., Camaioni D. M., Chipman D. M., Johnson M. A., Jonah C. D., Kimmel G. A., Miller J. H., Rescigno T. N., Rossky P. J., Xantheas S. S., Colson S. D., Laufer A. H., Ray D., Barbara P. F., Bartels D. M., Becker K. H., Bowen H., Bradforth S. E., Carmichael I., Coe J. V., Corrales L. R., Cowin J. P., Dupuis M., Eisenthal K. B., Franz J. A., Gutowski M. S., Jordan K. D., Kay B. D., LaVerne J. A., Lymar S. V., Madey T. E., McCurdy C. W., Meisel D., Mukamel S., Nilsson A. R., Orlando T. M., Petrik N. G., Pimblott S. M., Rustad J. R., Schenter G. K., Singer S. J., Tokmakoff A., Wang L. S., Wittig C., Zwier T. S.: https://doi.org/10.1021/cr030453x>
13b. Mol. Phys. 2005, 103, 1561.
< A., Fujii A., Ebata T., Mikami N.: https://doi.org/10.1080/00268970500123543>
13c. J. Phys. Chem. A 2005, 109, 2498.
E. A., Ei-Nasr A., Fujii A., Yahagi T., Ebata T., Mikami N.:
13d. J. Chem. Phys. 2004, 121, 2598.
< P., Krugler D., Brause R., Kleinermanns K.: https://doi.org/10.1063/1.1767517>
13e. J. Phys. Chem. A 2004, 108, 9715.
< R. H., Brutschy B.: https://doi.org/10.1021/jp048505p>
14a. J. Phys. Chem. A 1998, 102, 4471.
< C., Roth W., Schmitt M., Janzen C., Spangenberg D., Kleinermanns K.: https://doi.org/10.1021/jp9806157>
14b. Chem. Phys. 1998, 239, 1.
< W., Schmitt M., Jacoby C., Spangenberg D., Janzen C., Kleinermanns K.: https://doi.org/10.1016/S0301-0104(98)00252-3>
14c. J. Chem. Phys. 2000, 113, 2995.
< M., Jacoby C., Gerhards M., Unterberg C., Roth W., Kleinermanns K.: https://doi.org/10.1063/1.1286916>
14d. J. Chem. Phys. 2004, 120, 2752.
< M., Ratzer C., Meerts W. L.: https://doi.org/10.1063/1.1638378>
14e. Phys. Chem. Chem. Phys. 2003, 5, 4114.
< A., Jacoby C., Ratzer C., Reichelt A., Schmitt M.: https://doi.org/10.1039/b307223a>
15a. J. Phys. Chem. A 2004, 108, 10989.
< R. N., Paul J. B., McLaughlin R. P., Saykally R. J., van Mourik T.: https://doi.org/10.1021/jp040302d>
15b. Chemphyschem 2004, 5, 321.
< A. J., Casaes R. N., McCall B. J., Chung C. Y., Lee Y. P., Saykally R. J.: https://doi.org/10.1002/cphc.200300776>
15c. J. Chem. Phys. 2003, 118, 7863.
< L., Salama F., Allamandola L. J., Scherer J. J.: https://doi.org/10.1063/1.1564044>
15d. J. Chem. Phys. 2005, 122, 84318.
< X. F., Salama F.: https://doi.org/10.1063/1.1851502>
15e. Int. J. Mass Spectrom. 2004, 232, 25.
< E., Linnartz H., de Lange C. A., Ubachs W., Sfounis A., Massaouti M., Velegrakis M.: https://doi.org/10.1016/j.ijms.2003.11.002>
16a. J. Chem. Phys. 2004, 121, 10467.
< G. C., Legon A. C.: https://doi.org/10.1063/1.1809577>
16b. Coord. Chem. Rev. 2000, 197, 231.
< P. W., Legon A. C., Thumwood J. M. A., Waclawik E. R.: https://doi.org/10.1016/S0010-8545(99)00197-6>
17a. Angew. Chem., Int. Ed. 2005, 44, 603.
< B. M., Caminati W.: https://doi.org/10.1002/anie.200461860>
17b. Chem. Phys. 2005, 312, 111.
< B. M., Ottaviani P., Caminati W., Schnell M., Banser D., Grabow J. U.: https://doi.org/10.1016/j.chemphys.2004.11.028>
17c. J. Am. Chem. Soc. 2004, 126, 3244.
< J. L., Antolinez S., Blanco S., Lesarri A., Lopez J. C., Caminati W.: https://doi.org/10.1021/ja038696u>
18a. Angew. Chem., Int. Ed. 2005, 44, 3840.
< W., Lopez J. C., Alonso J. L., Grabow J. U.: https://doi.org/10.1002/anie.200500775>
18b. Chem. Phys. Lett. 2005, 401, 259.
< R., Blanco S., Lesarri A., Lopez J. C., Alonso J. L.: https://doi.org/10.1016/j.cplett.2004.11.095>
18c. Angew. Chem., Int. Ed. 2004, 43, 605.
< A., Cocinero E. J., Lopez J. C., Alonso J. L.: https://doi.org/10.1002/anie.200352543>
18d. Mol. Phys. 2005, 103, 1473.
< S., Lopez J. C., Lesarri A., Caminati W., Alonso J. L.: https://doi.org/10.1080/00268970500099925>
19a. Philos. Trans. R. Soc. London, Ser. A 2005, 363, 493.
< N., Leforestier C., Saykally R. J.: https://doi.org/10.1098/rsta.2004.1504>
19b. Chem. Rev. 2003, 103, 2533.
< F. N., Cruzan J. D., Saykally R. J.: https://doi.org/10.1021/cr980125a>
19c. Science 1996, 271, 59.
< J. D., Braly L. B., Liu K., Brown M. G., Loeser J. G., Saykally R. J.: https://doi.org/10.1126/science.271.5245.59>
20a. J. Chem. Phys. 2005, 122, 244312.
< S., Wang P. Q., Braun J. E., Georgiev S., Neusser H. J., Nandi C. K., Chakraborty T.: https://doi.org/10.1063/1.1937370>
20b. J. Electron Spectrosc. Relat. Phenom. 2005, 142, 207.
< S., Neusser H. J.: https://doi.org/10.1016/j.elspec.2004.09.015>
20c. Chem. Phys. Lett. 2001, 343, 475.
< K., Neusser H. J.: https://doi.org/10.1016/S0009-2614(01)00737-0>
21a. J. Chem. Phys. 2004, 121, 9855.
< F., Pratt S. T.: https://doi.org/10.1063/1.1810511>
21b. Chem. Phys. Lett. 2001, 334, 31.
< M. R., Robertson E. G., Simons J. P., Borst D. R., Korter T. M., Pratt D. W.: https://doi.org/10.1016/S0009-2614(00)01368-3>
22a. J. Chem. Phys. 1996, 104, 972.
< G., Meerts W. L., Schmitt M., Kleinermanns K.: https://doi.org/10.1063/1.470821>
22b. J. Chem. Phys. 1996, 104, 967.
< M., Schmitt M., Kleinermanns K., Stahl W.: https://doi.org/10.1063/1.470820>
23a. Int. Rev. Phys. Chem. 2005, 24, 1.
< C., Pratt D. W.: https://doi.org/10.1080/01442350500161453>
23b. J. Chem. Phys. 2005, 123, 94306.
< C. W., Yi J. T., Pratt D. W.: https://doi.org/10.1063/1.1990119>
23c. Mol. Phys. 2005, 103, 2453.
< T. V., Korter T. M., Pratt D. W.: https://doi.org/10.1080/00268970500197737>
23d. Science 2002, 296, 2347.
< D. W.: https://doi.org/10.1126/science.1073589>
23e. J. Am. Chem. Soc. 2004, 126, 11387.
< J. A., Nguyen T. V., Korter T. M., Pratt D. W.: https://doi.org/10.1021/ja0469683>
24. J. Phys. Chem. A 2004, 108, 69.
< Y. H., Jung J. W., Kim B., Butz P., Snoek L. C., Kroemer R. T., Simons J. P.: https://doi.org/10.1021/jp0368280>
25. J. Chem. Phys. 2002, 116, 7057.
< D. R., Joireman P. W., Pratt D. W., Robertson E. G., Simons J. P.: https://doi.org/10.1063/1.1462578>
26a. J. Chem. Phys. 2003, 119, 12914.
< M. S., Tong X., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1063/1.1626623>
26b. J. Chem. Phys. 2003, 119, 12908.
< X., Ford M. S., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1063/1.1626622>
26c. Phys. Chem. Chem. Phys. 2004, 6, 23.
< M. S., Müller-Dethlefs K.: https://doi.org/10.1039/b312115a>
27. Chem. Phys. Lett. 1992, 197, 443.
< C., Lahmann C., Wassermann B., Brutschy B.: https://doi.org/10.1016/0009-2614(92)85798-F>
28a. Science 2004, 303, 1169.
< B. C., Clarkson J. R., Zwier T. S.: https://doi.org/10.1126/science.1093731>
28b. J. Chem. Phys. 2005, 122, 214311.
< J. R., Dian B. C., Moriggi L., DeFusco A., McCarthy V., Jordan K. D., Zwier T. S.: https://doi.org/10.1063/1.1924454>
29a. Chem. Phys. Lett. 1993, 215, 347.
< S., Ebata T., Fujii M., Mikami N.: https://doi.org/10.1016/0009-2614(93)85726-5>
29b. Science 2004, 304, 1134.
< M., Fujii A., Ebata T., Mikami N.: https://doi.org/10.1126/science.1096037>
29c. J. Phys. Chem. A 2004, 108, 8269.
< M., Fujii A., Mikami N.: https://doi.org/10.1021/jp047723f>
29d. Chem. Phys. Lett. 2005, 409, 57.
< V., Fujii A., Mikami N.: https://doi.org/10.1016/j.cplett.2005.04.079>
30a. Chem. Phys. Lett. 2001, 344, 113.
< M., Jansen A., Unterberg C., Kleinermanns K.: https://doi.org/10.1016/S0009-2614(01)00771-0>
30b. Chem. Phys. Lett. 2003, 369, 173.
< I., Seefeld K. A., Kleinermanns K.: https://doi.org/10.1016/S0009-2614(02)01966-8>
30c. Chem. Phys. Lett. 2005, 409, 260.
< R., Nispel M., Haber T., Kleinermanns K.: https://doi.org/10.1016/j.cplett.2005.04.109>
31. J. Phys. Chem. A 2003, 107, 3678.
< M., Fujii A., Fujimaki E., Ebata T., Mikami N.: https://doi.org/10.1021/jp022504k>
32a. Mol. Phys. 2005, 103, 1521.
< A., Unterberg C., Fricke H., Gerhards M.: https://doi.org/10.1080/00268970500069522>
32b. Phys. Chem. Chem. Phys. 2004, 6, 2682.
< M., Unterberg C., Gerlach A., Jansen A.: https://doi.org/10.1039/b316001g>
32c. Opt. Commun. 2004, 241, 493.
< M.: https://doi.org/10.1016/j.optcom.2004.07.035>
33. Gerhards M.: Private communication.
34. IEEE J. Quantum Electron. 1993, 29, 1428.
< A., Bartolini R., Feinstein J., Gallerano G. P., Pantell R. H.: https://doi.org/10.1109/3.236158>
35. Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 393, 504.
< M. S., Weits H. H., Oepts D.: https://doi.org/10.1016/S0168-9002(97)00554-8>
36a. J. Am. Chem. Soc. 2005, 127, 11414.
< P., Jockusch R. A., Hunig I., Snoek L. C., Kroemer R. T., Davis B. G., Gamblin D. P., Compagnon I., Oomens J., Simons J. P.: https://doi.org/10.1021/ja0518575>
36b. J. Am. Chem. Soc. 2004, 126, 5709.
< R. A., Kroemer R. T., Talbot F. O., Snoek L. C., Carcabal P., Simons J. P., Havenith M., Bakker J. M., Compagnon I., Meijer G., von Helden G.: https://doi.org/10.1021/ja031679k>
37a. Eur. Phys. J. D 2002, 20, 317.
< E., Plutzer C., Kleinermanns K., de Vries M.: https://doi.org/10.1140/epjd/e2002-00167-2>
37b. Phys. Chem. Chem. Phys. 2005, 7, 3021.
< K. A., Plutzer C., Lowenich D., Haber T., Linder R., Kleinermanns K., Tatchen J., Marian C. M.: https://doi.org/10.1039/b505954b>
37c. Mol. Phys. 2004, 102, 1615.
< R., Schmitt M., Krugler D., Kleinermanns K.: https://doi.org/10.1080/00268970410001725792>
38a. Rev. Sci. Instrum. 2004, 75, 5221.
< M., Antoine R., Arnaud L., Barbaire M., Broyer M., Clavier C., Compagnon I., Dugourd P., Maurelli J., Rayane D.: https://doi.org/10.1063/1.1813112>
38b. J. Am. Chem. Soc. 2005, 127, 1388.
< W., Compagnon I., Dognon J. P., Canuel C., Piuzzi F., Dimicoli I., von Helden G., Meijer G., Mons M.: https://doi.org/10.1021/ja042860b>
38c. J. Am. Chem. Soc. 2005, 127, 8571.
< N. C., Paizs B., Snoek L. C., Compagnon I., Suhai S., Meijer G., von Helden G., Oomens J.: https://doi.org/10.1021/ja050858u>
39. Biophys. J. 2001, 80, 1256.
S. K., Chaban G. M., Gerber B.:
40. J. Chem. Phys. 1999, 111, 1823.
< G. M., Jung J. O., Gerber R. B.: https://doi.org/10.1063/1.479452>
41a. J. Chem. Phys. 2004, 120, 7400.
< Y., Ebata T., Kayano M., Mikami N.: https://doi.org/10.1063/1.1668640>
41b. Chem. Phys. Lett. 2004, 399, 412.
< M., Fujii A., Ebata T., Mikami N.: https://doi.org/10.1016/j.cplett.2004.10.036>
41c. J. Chem. Phys. 2004, 121, 11530.
< Y., Mikami N., Ebata T.: https://doi.org/10.1063/1.1829634>
41d. J. Phys. Chem. A 2001, 105, 8623.
< T., Kayano M., Sato S., Mikami N.: https://doi.org/10.1021/jp011043k>
41e. J. Chem. Phys. 2004, 120, 7410.
< M., Ebata T., Yamada Y., Mikami N.: https://doi.org/10.1063/1.1668641>
42a. J. Chem. Phys. 1998, 109, 7113.
< J. D., Knee J. L.: https://doi.org/10.1063/1.477395>
42b. J. Chem. Phys. 1999, 110, 3378.
< J. D., Knee J. L., Wategaonkar S.: https://doi.org/10.1063/1.478204>
42c. Discuss. Faraday Soc. 1994, 299.
< X., Knee J. L.: https://doi.org/10.1039/fd9949700299>
43a. J. Phys. Chem. A 2003, 107, 7373.
< S. M., Whiteside P. T., Reid K. L.: https://doi.org/10.1021/jp030341+>
43b. J. Chem. Phys. 2002, 117, 9099.
< J. A., Reid K. L., Towrie M., Matousek P.: https://doi.org/10.1063/1.1521723>
43c. Mol. Phys. 2005, 103, 1821.
< A. K., Bellm S. M., Hammond C. J., Reid K. L., Towrie M., Matousek P.: https://doi.org/10.1080/00268970500096103>
44a. J. Phys. Chem. A 2001, 105, 5637.
< N., Dopfer O.: https://doi.org/10.1021/jp004002h>
44b. J. Mol. Struct. 2001, 563–564, 241.
< N., Dopfer O.: https://doi.org/10.1016/S0022-2860(00)00835-8>
45. Angew. Chem., Int. Ed. 2005, 44, 6149.
< S., Sakai M., Tsuchida Y., Takeda A., Kawashima Y., Fujii M., Dopfer O., Müller-Dethlefs K.: https://doi.org/10.1002/anie.200501430>
46a. Chem. Phys. Lett. 2002, 365, 89.
< P., Hobza P.: https://doi.org/10.1016/S0009-2614(02)01423-9>
46b. J. Am. Chem. Soc. 2002, 124, 11802.
< P., Šponer J.: https://doi.org/10.1021/ja026759n>
46c. J. Am. Chem. Soc. 2003, 125, 15608.
< P., Hobza P.: https://doi.org/10.1021/ja036611j>
47. Nature 2000, 405, 681.
< K., Liang Y. A., Hsieh S. T., Zesch W., Chan W. P., Kenny T. W, Fearing R., Full R. J.: https://doi.org/10.1038/35015073>
48. Mol. Phys. 1970, 19, 553.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
49a. J. Chem. Soc., Faraday Trans. 2 1989, 85, 215.
< G., Gandolfo C.: https://doi.org/10.1039/f29898500215>
49b. J. Phys. Chem. 1994, 98, 6714.
< J. J., Rios R.: https://doi.org/10.1021/j100078a011>
50a. J. Am. Chem. Soc. 2004, 126, 2266.
< R., Feenstra J. S., Park S. T., Xu S. J., Zewail A. H.: https://doi.org/10.1021/ja031927c>
50b. J. Phys. Chem. A 2004, 108, 6650.
< S. J., Park S. T., Feenstra J. S., Srinivasan R., Zewail A. H.: https://doi.org/10.1021/jp0403689>
51. Caminati W.: Private communication.
52. J. Am. Chem. Soc. 1976, 98, 4021.
< W. F., Duerst R. W., Wilson E. B.: https://doi.org/10.1021/ja00429a060>
53. J. Am. Chem. Soc. 1976, 98, 6851.
< G., Jonsson B., Roos B., Wennerstrom H.: https://doi.org/10.1021/ja00438a015>
54a. J. Mol. Spectrosc. 2003, 220, 234.
< D., Hellweg A., Merke I., Stahl W., Baudelet M., Petitprez D., Wlodarczak G.: https://doi.org/10.1016/S0022-2852(03)00125-5>
54b. J. Mol. Spectrosc. 2005, 229, 1.
< M., Grabow J. U., Hartwig H., Heineking N., Meyer M., Stahl W., Caminati W.: https://doi.org/10.1016/j.jms.2004.08.005>
55. J. Electron Spectrosc. Relat. Phenom. 2000, 112, 231.
< M. S., Haines S. R., Pugliesi I., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1016/S0368-2048(00)00216-4>
56. Mol. Phys. 2003, 101, 705.
< M., Lindner R., Müller-Dethlefs K.: https://doi.org/10.1080/0026897021000054916>
57a. J. Phys. Chem. A 2005, 109, 3598.
< H. S., Solca N., Dopfer O.: https://doi.org/10.1021/jp0441487>
57b. Chem. Phys. Lett. 2005, 406, 321.
< U., Solca N., Dopfer O.: https://doi.org/10.1016/j.cplett.2005.02.077>
57c. Chem. Phys. Lett. 2003, 369, 68.
< N., Dopfer O.: https://doi.org/10.1016/S0009-2614(02)01929-2>
57d. J. Am. Chem. Soc. 2004, 126, 9520.
< N., Dopfer O.: https://doi.org/10.1021/ja047760k>
58. J. Chem. Phys. 1985, 83, 6201.
< D. D., Fraser G. T., Klemperer W.: https://doi.org/10.1063/1.449566>
59. Bunker P. R., Jensen P.: Molecular Symmetry and Spectroscopy, 2nd ed. NRC, Ottawa 1998.
60. Herzberg G.: Molecular Spectra and Molecular Structure, Vol. III, 2nd ed. Krieger Publishing Company, Malabar 1966.
61. J. Mol. Struct. (THEOCHEM) 1994, 307, 201.
< E. H. T., van der Avoird A., Wormer P. E. S.: https://doi.org/10.1016/0166-1280(94)80129-0>
62. Annu. Rev. Phys. Chem. 1991, 42, 369.
< R. C., Saykally R. J.: https://doi.org/10.1146/annurev.pc.42.100191.002101>
63. J. Chem. Phys. 1988, 88, 8008.
< Z. S., Miller R. E.: https://doi.org/10.1063/1.454258>
64. Wales D. J.: Energy Landscapes. Cambridge University Press, Cambridge 2003.
65. J. Chem. Phys. 2004, 121, 2655.
< G. S., Apra E., Xantheas S. S.: https://doi.org/10.1063/1.1767519>
66. J. Chem. Phys. 1999, 110, 6306.
< R. S., Braly L. B., Saykally R. J., Leforestier C.: https://doi.org/10.1063/1.478535>
67. J. Phys. Chem. 1994, 98, 10089.
< K., Jordan K. D.: https://doi.org/10.1021/j100091a024>
68. Chem. Phys. Lett. 1994, 228, 547.
< J. K., Clary D. C.: https://doi.org/10.1016/0009-2614(94)00987-2>
69. J. Chem. Phys. 1995, 102, 7817.
< J. K., Clary D. C.: https://doi.org/10.1063/1.468982>
70a. J. Chem. Phys. 2002, 116, 1500.
< C. J., Xantheas S. S.: https://doi.org/10.1063/1.1423942>
70b. J. Chem. Phys. 2002, 116, 1493.
< S. S., Burnham C. J., Harrison R. J.: https://doi.org/10.1063/1.1423941>
71. J. Chem. Phys. 2002, 116, 10148.
< N., Fellers R. S., Brown M. G., Braly L. B., Keoshian C. J., Leforestier C., Saykally R. J.: https://doi.org/10.1063/1.1476932>
72. Phys. Rev. Lett. 1985, 55, 2471.
< R., Parrinello M.: https://doi.org/10.1103/PhysRevLett.55.2471>
73a. J. Chem. Phys. 1987, 86, 2460.
< P. M., Zewail A. H.: https://doi.org/10.1063/1.452099>
73b. J. Chem. Phys. 1987, 86, 2483.
< J. S., Felker P. M., Zewail A. H.: https://doi.org/10.1063/1.452100>
74a. Chem. Phys. Lett. 2003, 368, 680.
< W., Matylitsky V. V., Riehn C., Brutschy B.: https://doi.org/10.1016/S0009-2614(02)01927-9>
74b. Phys. Chem. Chem. Phys. 2002, 4, 451.
< W., Matylitsky V. V., Weichert A., Riehn C.: https://doi.org/10.1039/b106317k>
75. J. Chem. Phys. 2002, 116, 1773.
< J., Stanton J. F.: https://doi.org/10.1063/1.1429244>
76. J. Chem. Phys. 2005, 122, 204322.
< I., Jurečka P., Hobza P.: https://doi.org/10.1063/1.1906205>
77. Phys. Chem. Chem. Phys. 2001, 3, 4578.
< P., Nachtigall P., Hobza P.: https://doi.org/10.1039/b105892b>
78a. Chem. Phys. Lett. 1993, 208, 359.
< M., Fitzgerald G., Komornicki A.: https://doi.org/10.1016/0009-2614(93)87156-W>
78b. Chem. Phys. Lett. 1993, 213, 514.
< O., Almlöf J., Feyereisen M.: https://doi.org/10.1016/0009-2614(93)89151-7>
79. Chem. Phys. Lett. 1996, 250, 477.
< D. E., Harrison R. J.: https://doi.org/10.1016/0009-2614(96)00054-1>
80. Chem. Phys. Lett. 1989, 162, 165.
< R., Bär M., Häser M., Horn H., Kölmel C.: https://doi.org/10.1016/0009-2614(89)85118-8>
81. Chem. Phys. 2002, 283, 331.
< P., Riehn Ch., Weichert A., Brutschy B.: https://doi.org/10.1016/S0301-0104(02)00569-4>
82. J. Chem. Phys. 1996, 105, 11024.
< S., Duran M., Dannenberg J. J.: https://doi.org/10.1063/1.472902>
83. Theor. Chem. Acc. 1998, 99, 372.
< P., Havlas Z.: https://doi.org/10.1007/s002140050034>
84. Biopolymers 1979, 18, 1149.
< I. K., Teplitsky A. B., Sukhodub L. F.: https://doi.org/10.1002/bip.1979.360180510>
85. Annu. Rev. Phys. Chem. 1991, 42, 109.
< K., Schlag E. W.: https://doi.org/10.1146/annurev.pc.42.100191.000545>
86. Nature 1991, 354, 249.
< E. R., White M. G.: https://doi.org/10.1038/354249a0>
87. Int. Rev. Phys. Chem. 1993, 12, 205.
< F., Softley T. P.: https://doi.org/10.1080/01442359309353282>
88. Chem. Rev. 1994, 94, 1845.
< K., Dopfer O., Wright T. G.: https://doi.org/10.1021/cr00031a006>
89. J. Chem. Soc., Faraday Trans. 1994, 90, 2425.
< I., Lindner R., Müller-Dethlefs K.: https://doi.org/10.1039/ft9949002425>
90. Müller-Dethlefs K. in: High Resolution Laser Photoionization and Photoelectron Studies (I. Powis, T. Baer and Ng C. Y., Eds), Chap. II, p. 22. John Wiley & Sons Ltd. 1995.
91. Adv. Chem. Phys. 1995, 90, 1.
< K., Schlag E. W., Grant E. R., Wang K., McKoy B. V.: https://doi.org/10.1002/9780470141496.ch1>
92. J. Electron Spectrosc. Relat. Phenom. 1995, 75, 35.
< K.: https://doi.org/10.1016/0368-2048(95)02387-9>
93. Müller-Dethlefs K., Cockett M. C. R. in: Nonlinear Spectroscopy for Molecular Structure Determination (R. W. Field, E. Hirota, J. P. Maier and S. Tsuchiya, Eds), pp. 164–199. IUPAC, Blackwell Science, Oxford 1998.
94. Angew. Chem., Int. Ed. 1998, 37, 1346.
< K., Schlag E. W.: https://doi.org/10.1002/(SICI)1521-3773(19980605)37:10<1346::AID-ANIE1346>3.0.CO;2-H>
95. Annu. Rep. Prog. Chem., Sect. C 1998, 94, 327.
< M. C. R., Müller-Dethlefs K., Wright T. G.: https://doi.org/10.1039/pc094327>
96. Annu. Rev. Phys. Chem. 1997, 48, 675.
< F.: https://doi.org/10.1146/annurev.physchem.48.1.675>
97. Annu. Rev. Phys. Chem. 1995, 46, 275.
< K. S., McKoy V.: https://doi.org/10.1146/annurev.pc.46.100195.001423>
98a. Angew. Chem., Int. Ed. 2002, 41, 166.
< S., Tarczay G., Tong X., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1002/1521-3773(20020104)41:1<166::AID-ANIE166>3.0.CO;2-3>
98b. Chem. Phys. Lett. 2002, 351, 121.
< S., Tarczay G., Tong X., Ford M. S., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1016/S0009-2614(01)01368-9>
98c. J. Phys. Chem. A 2002, 106, 1496.
< S., Tarczay G., Müller-Dethlefs K.: https://doi.org/10.1021/jp0123379>
98d. Phys. Chem. Chem. Phys. 2002, 4, 2897.
< S., Tong X., Tarczay G., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1039/b200125j>
98e. Chem. Phys. Lett. 1999, 303, 194.
< W. D., Dessent C. E. H., Cockett M. C. R., Müller-Dethlefs K.: https://doi.org/10.1016/S0009-2614(99)00201-8>
98f. J. Phys. Chem. A 1999, 103, 7186.
< W. D., Dessent C. E. H., Ullrich S., Müller-Dethlefs K.: https://doi.org/10.1021/jp991584y>
99. Chem. Phys. Lett. 1994, 228, 417.
< R., Dietrich H.-J., Müller-Dethlefs K.: https://doi.org/10.1016/0009-2614(94)00959-7>
100. J. Chem. Phys. 1993, 98, 4520.
< W. A.: https://doi.org/10.1063/1.465011>
101. J. Chem. Phys. 1991, 94, 5769.
< L. C., Johnson P.: https://doi.org/10.1063/1.460460>
102. J. Chem. Phys. 1993, 99, 3133.
< X., Smith J. M., Knee J. L.: https://doi.org/10.1063/1.465168>
103. J. Chem. Phys. 1994, 101, 3399.
< H. J., Lindner R., Müller-Dethlefs K.: https://doi.org/10.1063/1.467587>
104a. J. Chem. Phys. 1999, 111, 1955.
< D. M., Müller-Dethlefs K., Peel J. B.: https://doi.org/10.1063/1.479508>
104b. J. Chem. Phys. 1999, 111, 1947.
< S. R., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1063/1.479463>
104c. J. Chem. Phys. 1998, 109, 9244.
< S. R., Geppert W. D., Chapman D. M., Watkins M. J., Dessent C. E. H., Cockett M. C. R., Müller-Dethlefs K.: https://doi.org/10.1063/1.477583>
105a. Int. J. Mass Spectrom. 2000, 203, 1.
< J. E., Mehnert T., Neusser H. J.: https://doi.org/10.1016/S1387-3806(00)00384-5>
105b. J. Phys. Chem. A 2000, 104, 2013.
< J. E., Neusser H. J., Harter P., Stockl M.: https://doi.org/10.1021/jp992963u>
105c. J. Chem. Phys. 2004, 121, 7169.
< S., Wang P. Q., Braun J. E., Neusser H. J.: https://doi.org/10.1063/1.1792234>
105d. J. Phys. Chem. A 2004, 108, 3304.
< S., Chakraborty T., Neusser H. J.: https://doi.org/10.1021/jp0311198>
105e. Chem. Phys. Lett. 2004, 389, 24.
< S., Neusser H. J.: https://doi.org/10.1016/j.cplett.2004.02.107>
105f. Chem. Rev. 2000, 100, 3921.
< H. J., Siglow K.: https://doi.org/10.1021/cr9900578>
106. Phys. Rev. Lett. 1996, 76, 3530.
< H.-J., Müller-Dethlefs K., Baranov L. Y.: https://doi.org/10.1103/PhysRevLett.76.3530>
107. Chem. Phys. Lett. 2004, 390, 496.
< J., Hobza P.: https://doi.org/10.1016/j.cplett.2004.04.009>
108. J. Chem. Phys. 1989, 90, 1007.
< T. H.: https://doi.org/10.1063/1.456153>
109. Chem. Phys. Lett. 1998, 286, 243.
< A., Helgaker T., Jorgensen P., Klopper W., Koch H., Olsen J., Wilson A. K.: https://doi.org/10.1016/S0009-2614(98)00111-0>
110. Chem. Phys. Lett. 1998, 294, 45.
< D. G.: https://doi.org/10.1016/S0009-2614(98)00866-5>
111. J. Chem. Phys. 2001, 115, 10438.
< M. P., Krems R. V., Buchachenko A. A., Delgado-Barrio G., Villarreal P.: https://doi.org/10.1063/1.1415078>
112. Isr. J. Chem. 2003, 43, 243.
< R., Šroubková L.: https://doi.org/10.1560/KJPV-MPGQ-NVVX-252K>
113a. J. Chem. Phys. 1997, 107, 2451.
< T., Dunning T. H., Jr.: https://doi.org/10.1063/1.475148>
113b. J. Chem. Phys. 1997, 107, 4597.
< M., Brdarski S., Widmark P.-O., Lindh R., Karlström G.: https://doi.org/10.1063/1.474820>
113c. J. Chem. Phys. 2001, 115, 10438.
< M. P., Krems R. V., Bucharenko A. A., Delgado-Barrio G., Villarreal P.: https://doi.org/10.1063/1.1415078>
113d. Helv. Chim. Acta 2001, 84, 1328.
< L., Zahradník R.: https://doi.org/10.1002/1522-2675(20010613)84:6<1328::AID-HLCA1328>3.0.CO;2-0>
113e. Helv. Chim. Acta 2003, 86, 979.
< R., Šroubková L.: https://doi.org/10.1002/hlca.200390115>
113f. Int. J. Quantum Chem. 2005 104, 52.
< R., Šroubková L.: https://doi.org/10.1002/qua.20579>
114. J. Phys. Chem. A 2003 107, 3918.
< J., Neusser H. J., Hobza P.: https://doi.org/10.1021/jp027217v>
115a. J. Comput.Chem. 1995, 16, 1315.
< P., Šponer J., Retschel T.: https://doi.org/10.1002/jcc.540161102>
115b. Chem. Phys. Lett. 1994, 229, 175.
< S., Pulay P.: https://doi.org/10.1016/0009-2614(94)01027-7>
116a. J. Phys. Chem. A 2003, 107, 8939.
< M.-S., Lu Y., Parker V. D., Scheiner S.: https://doi.org/10.1021/jp034985t>
116b. J. Am. Chem. Soc. 2002, 124, 5197.
< C., Ruiz E., Rodríguez-Fortea A., Alvarez S.: https://doi.org/10.1021/ja0178160>
116c. Eur. J. Inorg. Chem. 2003, 2197.
< S. D.: https://doi.org/10.1002/ejic.200200278>
116d. J. Chem. Phys. 2001, 114, 5149.
< M., Hobza P., Frauenheim T., Suhai S., Kaxiras E.: https://doi.org/10.1063/1.1329889>
116e. J. Chem. Phys. 2002, 116, 11039.
< S. M., Bledson T. M., Toczyłowski R. R.: https://doi.org/10.1063/1.1480873>
116f. Chem. Eur. J. 2003, 1486.
< A., Saielli G.: https://doi.org/10.1002/chem.200390168>
116g. J. Phys. Chem. A 2003, 107, 5298.
< R. M., Downs A. J.: https://doi.org/10.1021/jp034808s>
117a. Bartlett R. J., Grabowski I., Hirata S., Ivanov S.: The Exchange-Correlation Potential in ab initio Density Functional Theory and Coupled-Cluster Theory, submitted.
117b. J. Chem. Phys. 2002, 116, 4415.
< I., Hirata S., Ivanov S., Bartlett R. J.: https://doi.org/10.1063/1.1445117>
117c. J. Chem. Phys. 2002, 116, 6468.
< S., Ivanov S., Grabowski I., Bartlett R. J.: https://doi.org/10.1063/1.1460869>
117d. Chem. Phys. Lett. 2002, 357, 301.
< A. J., Szalewicz K.: https://doi.org/10.1016/S0009-2614(02)00533-X>
117e. Phys. Rev. Lett. 2003, 91, 33201.
< A. J., Jeziorski B., Szalewicz K.: https://doi.org/10.1103/PhysRevLett.91.033201>
117f. Int. J. Quantum Chem. 2003, 95, 177.
< M. C., Paz J. L., Hernández A. J., Manzanares C. I., Ludeňa E. V.: https://doi.org/10.1002/qua.10669>
118a. J. Am. Chem. Soc. 2005, 127, 2615.
< J., Bendová L., Klusák V., Hobza P.: https://doi.org/10.1021/ja044607h>
118b. Phys. Chem. Chem. Phys. 2005, 7, 1624.
< J., Hobza P.: https://doi.org/10.1039/b502769c>
119. Aliev M. R., Watson J. K. G. in: Molecular Spectroscopy: Modern Research, (K. Nahari Rao, Ed.), Vol. III. Academic Press, New York 1985.
120. Mills I. M. in: Molecular Spectroscopy: Modern Research, (K. Nahari Rao and C. W. Mathews, Eds), Vol. I., p. 115. Academic Press, New York 1972.
121. J. Chem. Phys. 1992, 97, 4233.
< P. E., Handy N. C., Amos R. D., Jayatilaka D.: https://doi.org/10.1063/1.463926>
122. Chem. Phys. Lett. 1992, 197, 506.
< N. C., Masle P. E., Amos R. D., Andrews J. S., Murray C. C. W., Laming G. J.: https://doi.org/10.1016/0009-2614(92)85808-N>
123. Chem Phys. Lett. 1994, 228, 568.
< O., Špirko V., Kobayashi R., Jorgensen P.: https://doi.org/10.1016/0009-2614(94)00991-0>
124. J. Chem. Phys. 1997, 106, 1472.
< V., Šponer J., Hobza P.: https://doi.org/10.1063/1.473296>
125. Phys. Chem. Chem. Phys. 1999, 1, 3073.
< P., Bludský O., Suhai S.: https://doi.org/10.1039/a902109d>
126. J. Chem. Phys. 1995, 103, 933.
< M. J., Saykally R. J.: https://doi.org/10.1063/1.469794>
127. J. Chem. Phys. 1999, 110, 5651.
< R. E., Heijmen T. G. A., Wormer P. E. S., van der Avoird A., Moszynski R.: https://doi.org/10.1063/1.478463>
128. Chem. Phys. Lett. 1994, 226, 22.
< G. C. M., Wormer P. E. S., van der Aoird A., Schuttenmaer C. A., Saykally R. J.: https://doi.org/10.1016/0009-2614(94)00685-7>
129. J. Chem. Phys. 1991, 95, 7891.
< R. S., Saykally R. J.: https://doi.org/10.1063/1.461318>
130. J. Phys. Chem. A 2005, 109, 6974.
< B., Gerber R. B., Kabeláč M., Hobza P., Bakker J. M., Riziq A. G. A., de Vries M. S.: https://doi.org/10.1021/jp051767m>
131a. J. Chem. Phys. 1993, 98, 9266.
< H.-C., Klemperer W.: https://doi.org/10.1063/1.464407>
131b. J. Chem. Phys. 1994, 100, 1.
< H.-C., Klemperer W.: https://doi.org/10.1063/1.466980>
131c. J. Chem. Phys. 1998, 108, 10096.
< W., Quack M., Suhm M. A.: https://doi.org/10.1063/1.476470>
131d. Chem. Phys. Lett. 1990, 171, 517.
< M., Suhm M. A.: https://doi.org/10.1016/0009-2614(90)85256-C>
131e. J. Chem. Phys. 1996, 105, 6645.
< S., Anderson D. T., Nesbitt D. J.: https://doi.org/10.1063/1.471978>
131f. J. Chem. Phys. 2003, 118, 537.
< P., Szczęśniak M. M.: https://doi.org/10.1063/1.1527011>
131g. J. Phys. Chem. 1994, 98, 6068.
< J. T. Jr., Sneh O., Nesbitt D. J.: https://doi.org/10.1021/j100075a005>
131h. J. Phys. Chem. 1994, 98, 7313.
< S. N., Chang H.-C., Klemperer W.: https://doi.org/10.1021/j100081a013>
131i. J. Chem. Phys. 2002, 117, 10019.
< R., Cunha C., Buchachenko A. A., Delgado-Barrio G., Villarreal P.: https://doi.org/10.1063/1.1519001>
131j. J. Chem. Phys. 2002, 117, 615.
< V., Bartolomei M., Cappelletti D., Carmona-Novillo E., Pirani F.: https://doi.org/10.1063/1.1482696>
131k. J. Chem. Phys. 2002, 117, 1522.
< P., Seurre N., Chevalier M., Broquier M., Brenner V.: https://doi.org/10.1063/1.1486440>
131l. J. Chem. Phys. 2002, 116, 7868.
< M. J., Belcher D., Cockett M. C. R.: https://doi.org/10.1063/1.1468219>
132. J. Chem. Phys. 2003, 118, 1196.
< M. D., Pond B. V., Lester M. I.: https://doi.org/10.1063/1.1527921>
133a. J. Chem. Phys. 2002, 117, 6493.
< N. L., Kaposta C., von Helden G., Meijer G., Wöste L., Neumark D. M., Asmis K. R.: https://doi.org/10.1063/1.1506308>
133b. Chem. Eur. J. 2003, 9, 3154.
< N., Dopfer O.: https://doi.org/10.1002/chem.200204629>
134. J. Chem. Phys. 1993, 99, 4518.
< R. A.: https://doi.org/10.1063/1.466051>
135. J. Chem. Phys. 1992, 96, 6752.
< J. M.: https://doi.org/10.1063/1.462563>
136. J. Chem. Phys. 1988, 89, 4550.
< J. M.: https://doi.org/10.1063/1.454795>
137. Chem. Phys. 1982, 64, 95.
< J. R., Watts R. O., Klein M. L.: https://doi.org/10.1016/0301-0104(82)85006-4>
138. J. Chem. Phys. 2002, 117, 2762.
< T., Ruggiero G. D., Siu K. W. M., Hopkinson A. C., Williams I. H.: https://doi.org/10.1063/1.1488930>
139. Nachr. Chem. 2003, 51, 325.
< D.: https://doi.org/10.1002/nadc.20030510706>
140. J. Chem. Phys. 1986, 85, 5943.
< F. G., Berry R. S.: https://doi.org/10.1063/1.451506>
141. J. Am. Chem. Soc. 1995, 117, 5179.
< W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M. Jr., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.: https://doi.org/10.1021/ja00124a002>
142a. Chem. Rev. 1999, 99, 3247.
< P., Šponer J.: https://doi.org/10.1021/cr9800255>
142b. Collect. Czech. Chem. Commun. 2003, 68, 2231.
< J., Hobza P.: https://doi.org/10.1135/cccc20032231>
143. J. Phys. Chem. 1998, 102, 6921.
< M., Engkvist O., Šponer J., Jungwirth P., Hobza P.: https://doi.org/10.1021/jp9816418>
144. Chem. Phys. Lett. 1999, 313, 393.
< F., Kratochvíl M., Hobza P.: https://doi.org/10.1016/S0009-2614(99)01013-1>
145. Phys. Chem. Chem. Phys. 2000, 2, 2419.
< M., Engkvist O., Jungwirth P., Hobza P.: https://doi.org/10.1039/b001022g>
146. J. Am. Chem. Soc. 2000, 122, 3495.
< M., Šponer J., Hobza P.: https://doi.org/10.1021/ja9936060>
147. J. Phys. Chem. A 2001, 105, 1197.
< F., Engkvist O., Vacek J., Kratochvíl M., Hobza P.: https://doi.org/10.1021/jp003078a>
148. J. Phys. Chem. B 2001, 105, 5804.
< M., Hobza P.: https://doi.org/10.1021/jp0104886>
149a. Chem. Eur. J. 2001, 7, 2067.
< M., Hobza P.: https://doi.org/10.1002/1521-3765(20010518)7:10<2067::AID-CHEM2067>3.0.CO;2-S>
149b. J. Phys. Chem. 2005, 109, 12206.
< M., Zendlová L., Řeha D., Hobza P.: https://doi.org/10.1021/jp045970d>
150. Phys. Chem. Chem. Phys. 2002, 4, 4192.
< S. A., Bogdan T. V., Rueda M., Orozco M., Luque F. J., Šponer J., Slavíček P., Hobza P.: https://doi.org/10.1039/b202156k>
151. J. Am. Chem. Soc. 2003, 125, 7678.
< M., Ryjáček F., Kabeláč M., Kubar T., Bogdan T. V., Trygubenko S. A., Hobza P.: https://doi.org/10.1021/ja034245y>
152. J. Phys. Chem. B 2004, 108, 2087.
< M., Kabeláč M., Rejnek J., Ryjáček F., Hobza P.: https://doi.org/10.1021/jp036090m>
153. Phys. Chem. Chem. Phys. 2005, 7, 2006.
< J., Hanus M., Kabeláč M., Ryjáček F., Hobza P.: https://doi.org/10.1039/b501499a>
154. Phys. Chem. Chem. Phys. 2002 4, 2119.
< J., Vacek. J., Hobza P.: https://doi.org/10.1039/b110872g>
155. J. Phys. Chem. A2003, 107, 3086.
< J., Vacek J., Hobza P.: https://doi.org/10.1021/jp027637k>
156. J. Phys. Chem. A 2002, 106, 11540.
< J., Vacek J., Huisken F., Werhahn O., Hobza P.: https://doi.org/10.1021/jp025925a>
157. Chem. Eur. J. 2000, 6, 1865.
< M., Halupka M., Sander W.: https://doi.org/10.1002/(SICI)1521-3765(20000515)6:10<1865::AID-CHEM1865>3.0.CO;2-9>
158. Brutschy B.: Personal communication, 2000.
159. J. Chem. Phys. 2004, 120, 10554.
< F., Havenith M., Nauta K., Miller R. E., Chocholoušová J., Hobza P.: https://doi.org/10.1063/1.1709942>
160a. J. Chem. Phys. 1993, 98, 3564.
< F., McBane G. C., Kim G., Giese C. F., Gentry W. R.: https://doi.org/10.1063/1.464079>
160b. J. Chem. Phys. 1989, 91, 2348.
< B., McLean A. D.: https://doi.org/10.1063/1.457043>
160c. J. Chem. Phys. 1990, 93, 643.
< R. J., van Lenthe J. H., van Duijneveldt F. B.: https://doi.org/10.1063/1.459511>
160d. J. Chem. Phys. 1991, 94, 8047.
< R. A., Slaman M. J.: https://doi.org/10.1063/1.460139>
160e. Phys. Rev. 1928, 32, 349.
< J. C.: https://doi.org/10.1103/PhysRev.32.349>
160f. Chem. Rev. 1988, 88, 943.
< G., Gutowski M.: https://doi.org/10.1021/cr00088a007>
160g. J. Chem. Phys. 1995, 103, 6127.
< W., Noga J.: https://doi.org/10.1063/1.470440>
160h. J. Chem. Phys. 2000, 113, 71.
< M., Klopper W., Noga J.: https://doi.org/10.1063/1.481775>
160i. Phys. Rev. Lett. 1995, 74, 1586.
< R. A., Janzen A. R., Moldover M. R.: https://doi.org/10.1103/PhysRevLett.74.1586>
160j. J. Chem. Phys. 1991, 94, 8047.
< R. A., Slaman M. J.: https://doi.org/10.1063/1.460139>
160k. J. Chem. Phys. 1996, 104, 1151.
< F., Giese C. F., Gentry W. R.: https://doi.org/10.1063/1.470771>
160l. Toennies J. P. in: The Chem. Phys. of Atomic and Mol. Clusters (Proc. Int. School of Physics ˝Enrico Fermi˝, Course 107) (G. Scoles, Ed.). Elsevier, Amsterdam 1990.
160m. J. Chem. Phys. 1996, 104, 1155.
< W., Toennies J. P.: https://doi.org/10.1063/1.470772>
160n. Chem. Phys. 1983, 78, 295.
< R. A., Meath W. J., Allnatt A. R.: https://doi.org/10.1016/0301-0104(83)85115-5>
160o. Chem. Phys. 1989, 130, 187.
< R. A., Slaman M. J.: https://doi.org/10.1016/0301-0104(89)87048-X>
160p. Mol. Phys. 1986, 58, 679.
< R. A., Slaman M. J.: https://doi.org/10.1080/00268978600101501>
160q. J. Chem. Phys. 2003, 118, 4976.
< K. T., Toennies J. P.: https://doi.org/10.1063/1.1543944>
160r. Int. J. Quantum Chem. 2003, 95, 303.
< E. F., Martins M. M., Evangelisti S.: https://doi.org/10.1002/qua.10738>
160s. J. Chem. Phys. 2002, 116, 9620.
< T., Gdanitz R. J.: https://doi.org/10.1063/1.1476010>
161a. Int. J. Quantum Chem. 2004, 97, 977.
< J., Zhuo S., Ju G.: https://doi.org/10.1002/qua.10787>
161b. J. Chem. Phys. 2003, 118, 1242.
< Ch., Dagdigian P. J.: https://doi.org/10.1063/1.1529662>
161c. J. Chem. Phys. 2002, 116, 9269.
< J., Chałasiński G., Krems R. V., Buchachenko A. A., Aquilanti V., Pirani F., Cappelletti D.: https://doi.org/10.1063/1.1476009>
161d. J. Chem. Phys. 1980, 73, 1880.
< W., Hariharan P. C., Kutzelnigg W.: https://doi.org/10.1063/1.440324>
161e. J. Chem. Phys. 2002, 116, 9249.
< R., Cunha C., Villarreal P., Delgado-Barrio G.: https://doi.org/10.1063/1.1473800>
161f. J. Chem. Phys. 2001, 115, 10138.
< K., Miller R. E.: https://doi.org/10.1063/1.1392378>
161g. J. Phys. Chem. 1992, 96, 4237.
< J. M.: https://doi.org/10.1021/j100190a026>
161h. J. Chem. Phys. 2003, 118, 1110.
< V. F., van der Avoird A.: https://doi.org/10.1063/1.1527570>
161i. J. Chem. Phys. 2002, 117, 2629.
< A. A., Szczęśniak M. M., Kłos J., Chałasiński G.: https://doi.org/10.1063/1.1491411>
161j. J. Chem. Phys. 2002, 117, 2619.
< H. L., Hendricks J. H., Bowen K. H.: https://doi.org/10.1063/1.1491410>
161k. J. Chem. Phys. 2003, 118, 2731.
< J., Chałasiński G., Cybulski S. M., Szczęśniak M. M.: https://doi.org/10.1063/1.1531109>
161l. J. Chem. Phys. 2002, 117, 7562.
< M., van der Avoird A., Wormer P. E. S., Halberstadt N.: https://doi.org/10.1063/1.1506154>
162a. J. Chem. Phys. 1996, 104, 7830.
< H.-C., Klemperer W.: https://doi.org/10.1063/1.471499>
162b. Int. J. Quantum Chem. 2003, 92, 152.
< A., Knapp-Mohammady M., Suhai S.: https://doi.org/10.1002/qua.10501>
162c. Int. J. Quantum Chem. 1983, 23, 341.
< I.: https://doi.org/10.1002/qua.560230203>
162d. J. Chem. Phys. 2002, 117, 7017.
< R., Cunha C., Villarreal P., Delgado-Barrio G.: https://doi.org/10.1063/1.1506920>
162e. J. Chem. Phys. 1992, 96, 6039.
< Q., Chenyang L., Ma Y., Fish F., Szczęśniak M. M., Buch V.: https://doi.org/10.1063/1.462645>
162f. J. Chem. Phys. 2003, 118, 4066.
< S. A. C.: https://doi.org/10.1063/1.1540628>
162g. J. Chem. Phys. 2003, 118, 7797.
< A., Karlström G., Nelander B.: https://doi.org/10.1063/1.1563608>
162h. J. Chem. Phys. 2001, 114, 10294.
< J. W., Bačić Z., Sarsa A., Schmidt K. E.: https://doi.org/10.1063/1.1373694>
162i. J. Phys. Chem. A 2003, 107, 5391.
< P., Herrebout W. A., van der Veken B. J.: https://doi.org/10.1021/jp034553i>
162j. J. Comput. Chem. 1995, 16, 1170.
< F., Morokuma K.: https://doi.org/10.1002/jcc.540160911>
162k. Int. J. Quantum Chem. 2004, 96, 294.
< B. W., Tschumper G. S.: https://doi.org/10.1002/qua.10725>
162l. Angew. Chem., Int. Ed. 2004, 43, 605.
< A., Cocinero E. J., López J. C., Alonso J. L.: https://doi.org/10.1002/anie.200352543>
162m. J. Chem. Phys. 2002, 117, 2592.
< J. Y., Li W., Guo R., Zhao X. S.: https://doi.org/10.1063/1.1493177>
162n. J. Chem. Phys. 2002, 117, 8248.
< Z., Pietrewicz B. A., Pszczółkowski L.: https://doi.org/10.1063/1.1511182>
162o. J. Am. Chem. Soc. 2002, 124, 10706.
< A. V., Grigorenko B. L., Khriachtchev L., Tanskanen H., Pettersson M., Räsänen M.: https://doi.org/10.1021/ja0266870>
162p. J. Chem. Phys. 2002, 116, 6867.
< Q. K., Nguyen T.-N., Peslherbe G. H.: https://doi.org/10.1063/1.1470495>
162r. J. Phys. Chem. A 2003, 107, 7845.
< H., Sordo J. A.: https://doi.org/10.1021/jp035826c>
162s. J. Phys. Chem. A 2003, 107, 7546.
< E. S., Zeegers-Huyskens T.: https://doi.org/10.1021/jp022498s>
162t. J. Chem. Phys. 2001, 115, 10678.
< H.-Y., Sheu W.-S.: https://doi.org/10.1063/1.1421356>
162u. J. Phys. Chem. A 2003, 107, 4768.
< R., Villarreal P., Delgado-Barrio G.: https://doi.org/10.1021/jp0347318>
163. J. Phys. Chem. A 2003, 107, 7597.
< N., Kasuno M., Banu K., Kihara S., Nakamatsu H.: https://doi.org/10.1021/jp0348171>
164a. J. Chem. Phys. 1975, 63, 1419.
< K. C., Hemminger J. C., Winn J. S., Novick S. E., Harris S. J., Klemperer W.: https://doi.org/10.1063/1.431502>
164b. J. Chem. Phys. 1979, 70, 4940.
< J. M., Dixon T. A., Klemperer W.: https://doi.org/10.1063/1.437383>
164c. J. Chem. Phys. 1993, 98, 4294.
< E., Gutowsky H. S.: https://doi.org/10.1063/1.465035>
164d. J. Am. Chem. Soc. 1994, 116, 3500.
< P., Selzle H. L., Schlag E. W.: https://doi.org/10.1021/ja00087a041>
164e. J. Phys. Chem. 1996, 100, 18790.
< P., Selzle H. L., Schlag E. W.: https://doi.org/10.1021/jp961239y>
164f. J. Chem. Phys. 1996, 105, 2780.
< R. L., Smith G. D.: https://doi.org/10.1063/1.472140>
164g. J. Chem. Phys. 2001, 114, 3949.
< S., Lüthi H. P.: https://doi.org/10.1063/1.1344891>
164h. J. Am. Chem. Soc. 2002, 124, 10887.
< M. O., Valeev E. F., Sherrill C. D.: https://doi.org/10.1021/ja025896h>
164i. J. Chem. Phys. 2002, 116, 7902.
< N. K., Park S., Kim S. K.: https://doi.org/10.1063/1.1468641>
164j. J. Chem. Phys. 2002, 116, 7910.
< N. K., Park S., Kim S. K.: https://doi.org/10.1063/1.1468642>
164k. J. Chem. Phys. 2001, 115, 10175.
< A., Even U., Jortner J.: https://doi.org/10.1063/1.1401816>
164l. Hübner O., Glöß A., Klopper W. in: Electron Correlation: ab initio Methods and Density Functional Theory, Bad Herrenalb, Germany, July 16–19, 2003, p. 27.
164m. J. Chem. Phys. 2002, 117, 9766.
< E., Emilsson T., Gutowsky H. S., Fraser G. T., de Oliveira G., Dykstra C. E.: https://doi.org/10.1063/1.1518999>
164n. J. Chem. Phys. 2001, 115, 11147.
< M., Pratt D. W.: https://doi.org/10.1063/1.1416875>
164o. J. Phys. Chem. A 2003, 107, 10753.
< M., Kang Ch., Pratt D. W.: https://doi.org/10.1021/jp035201e>
164p. J. Chem. Phys. 2002, 117, 8805.
< B., Buchhold K., Barth H.-D., Brutschy B., Tarakeshwar P., Kim K. S.: https://doi.org/10.1063/1.1510443>
164q. J. Am. Chem. Soc. 2002, 124, 6133.
< R., Gervasio F. L., Procacci P., Schettino V.: https://doi.org/10.1021/ja0121639>
164r. J. Chem. Phys. 2002, 116, 10684.
< J. M., Tarakeshwar P., Kim K. S., Clark T.: https://doi.org/10.1063/1.1479135>
164s. J. Chem. Phys. 2002, 116, 9672.
< A. F., Adamowicz L.: https://doi.org/10.1063/1.1476012>
164t. J. Chem. Phys. 2002, 116, 9663.
< K., Schiedt J., Weinkauf R., Schlag E. W., Nilles J. M., Xu S.-J., Thomas O. C., Bowen K. H.: https://doi.org/10.1063/1.1475750>
164u. Angew. Chem., Int. Ed. 2003, 42, 854.
< D.: https://doi.org/10.1002/anie.200390231>
165. J. Chem. Phys. 2001, 115, 11166.
< O., Gómez P. C., Pacios L. F.: https://doi.org/10.1063/1.1420749>
166. Desiraju G. R., Steiner T.: The Weak Hydrogen Bond. Oxford University Press, Oxford 1999.
167. Scheiner S.: Hydrogen Bonding. Oxford University Press, New York 1997.
168. Jeffrey G. A.: An Introduction to Hydrogen Bonding. Oxford University Press, New York 1997.
169. Science 1992, 257, 942.
< S., Green P. G., Bumgarner R. E., Dasgumpta S., Goddard III W. A., Blake G. A.: https://doi.org/10.1126/science.257.5072.942>
170. J. Chem. Phys. 1995, 103, 531.
< R. N., Garret A. W., Haber K., Zwier T. S.: https://doi.org/10.1063/1.470139>
171. Z. Phys. Chem. 1996, 195, 253.
< S., Lembach G., Barth H.-D., Brutschy B.: https://doi.org/10.1524/zpch.1996.195.Part_1_2.253>
172. J. Chem. Phys. 1997, 107, 10573.
< S., Barth H.-D., Buchhold K., Brutschy B.: https://doi.org/10.1063/1.474221>
173. J. Chem. Phys. 1997, 107, 10573.
< S., Barth H.-D., Buchhold K., Brutschy B.: https://doi.org/10.1063/1.474221>
174. Chem. Phys. Lett. 1990, 173, 107.
< A. C., Roberts B. P., Wallwork A. L.: https://doi.org/10.1016/0009-2614(90)85312-Z>
175. Chem. Commun. 1998, 891.
< T., Desiraju G. R.: https://doi.org/10.1039/a708099i>
176a. J. Chem. Soc., Perkin Trans. 2 1996, 2441.
< T., Tamm M., Grzegorzewski A., Schulte N., Veldman N., Schreurs A. M. M., Kanters J. A., Kroon J., van der Maas J., Lutz B.: https://doi.org/10.1039/p29960002441>
176b. J. Am. Chem. Soc. 1992, 114, 7123.
< T., Saenger W: https://doi.org/10.1021/ja00044a025>
176c. J. Chem. Soc., Perkin 2 1995, 1321.
< T.: https://doi.org/10.1039/p29950001321>
177. Top. Curr. Chem. 1980, 93, 91.
< G. T., Dumas J.-M., Dupuis P., Guerin M., Sandorfy C.: https://doi.org/10.1007/3-540-10058-X_9>
178. Synthesis 1989, 858.
< M., Fiedler P., Arnold Z.: https://doi.org/10.1055/s-1989-27411>
179. J. Mol. Struct. 1997, 167, 436.
I. E., Tsymbal I. F., Ryltsev E. V., Latajka Z., Barnes A. J.:
180a. Chem. Rev. 2000, 100, 4253.
< P., Havlas Z.: https://doi.org/10.1021/cr990050q>
180b. Theor. Chem. Acc. 2002, 108, 325.
< P., Havlas Z.: https://doi.org/10.1007/s00214-002-0367-5>
181. Res. Appl. Ind. 1957, 10, 149.
C. A.:
182. Chem. Rev. 1988, 88, 899.
< A. E., Curtiss L. A., Weinhold F.: https://doi.org/10.1021/cr00088a005>
183. J. Phys. Chem. 2002, 106, 4695.
< K.: https://doi.org/10.1021/jp0143948>
184. Phys. Chem. Chem. Phys. 2001, 3, 2555.
< P.: https://doi.org/10.1039/b103068j>
185. Phys. Chem. Chem. Phys. 2003, 5, 1290.
< P., Špirko V.: https://doi.org/10.1039/b210223d>
186. Phys. Chem. Chem. Phys. 2002, 4, 740.
< E., Janzen Ch., Imhof P., Kleinermanns K., de Vries M. S.: https://doi.org/10.1039/b110360c>
187. J. Am. Chem. Soc. 2001, 123, 12290.
< B. J., Herrebout W. A., Szostak R., Shepkin D. N., Havlas Z., Hobza P.: https://doi.org/10.1021/ja010915t>
188. J. Am. Chem. Soc. 2003, 125, 5973.
< I. V., Manoharan M., Peabody S., Weinhold F.: https://doi.org/10.1021/ja034656e>
189. J. Phys. Chem. A 1998, 102, 2501.
< P., Špirko V., Selzle H. L., Schlag E. W.: https://doi.org/10.1021/jp973374w>
190. Chem. Phys. Lett. 1999, 299, 180.
< P., Špirko V., Havlas Z., Buchhold K., Reimann B., Barth H.-D., Brutschy B.: https://doi.org/10.1016/S0009-2614(98)01264-0>
191. J. Phys. Chem. A 2001, 105, 5560.
< B., Buchhold K., Vaupel S., Brutschy B., Havlas Z., Hobza P.: https://doi.org/10.1021/jp003726q>
192. Chem. Phys. Lett. 1999, 303, 447.
< P., Havlas Z.: https://doi.org/10.1016/S0009-2614(99)00217-1>
193. ChemPhysChem 2005, 6, 609.
< W., Jurečka P., Hobza P.: https://doi.org/10.1002/cphc.200400243>
194. Scheiner S. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), VCH Publishers, Inc., Weinheim 1991.
195a. Angew. Chem., Int. Ed. 2002, 41, 48.
< T.: https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U>
195b. Chem. Eur. J. 2003, 9, 628.
< C. A., Siddick M. M.: https://doi.org/10.1002/chem.200390067>
196a. J. Chem. Phys. 2003, 118, 6157.
< J., Caillet J., Berges J., Reinhardt P.: https://doi.org/10.1063/1.1558473>
196b. J. Am. Chem. Soc. 2003, 125, 8992.
< S., Klein M. L.: https://doi.org/10.1021/ja0351995>
196c. J. Phys. Chem. A 2003, 107, 6073.
< A., Kulkarni G. U., Rao C. N. R.: https://doi.org/10.1021/jp030465m>
196d. J. Chem. Phys. 2002, 116, 7380.
< A., Merz K. M., Jr.: https://doi.org/10.1063/1.1466829>
197a. Eur. J. Org. Chem. 1999, 1991.
< D. M., Rebek J., Jr.: https://doi.org/10.1002/(SICI)1099-0690(199909)1999:9<1991::AID-EJOC1991>3.0.CO;2-5>
197b. Chem. Eur. J. 2001, 7, 3482.
< P. R., Baldoni V., Balzani V., Credi A., Hoffmann H. D. A., Martínez-Díaz M.-V., Raymo F. M., Stoddart J. F., Venturi M.: https://doi.org/10.1002/1521-3765(20010817)7:16<3482::AID-CHEM3482>3.0.CO;2-G>
197c. Eur. J. Org. Chem. 2001, 4489.
< V. T., Ahn P. D., Bishop R., Scudder M. L., Craig D. C.: https://doi.org/10.1002/1099-0690(200112)2001:23<4489::AID-EJOC4489>3.0.CO;2-Z>
197d. Chem. Eur. J. 2001, 7, 2810.
< V., Huc I., Khoury R. G., Lehn J.-M.: https://doi.org/10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5>
198a. J. Chem. Phys. 1979, 71, 2703.
< L. A., Frurip D. J., Blander M.: https://doi.org/10.1063/1.438628>
198b. Angew. Chem., Int. Ed. 2003, 42, 4904.
< T., Schulte F., Huelsekopf M., Ludwig R.: https://doi.org/10.1002/anie.200351438>
198c. J. Chem. Phys. 2003, 118, 4386.
< E. M., Bukowski R., Szalewicz K.: https://doi.org/10.1063/1.1542871>
198d. J. Chem. Phys. 2003, 118, 4404.
< E. M., Bukowski R., Szalewicz K.: https://doi.org/10.1063/1.1542872>
198e. Angew. Chem., Int. Ed. 2004, 43, 1374.
< B.-Q., Sun H.-L., Gao S.: https://doi.org/10.1002/anie.200353097>
198f. J. Chem. Phys. 2003, 118, 3583.
< J.-L., Ciobanu C. V., Ojamäe L., Shavitt I., Singer S. J.: https://doi.org/10.1063/1.1538240>
198g. Science 2003, 301, 347.
< A. W., Kropman M. F., Woutersen S., Bakker H. J.: https://doi.org/10.1126/science.1084801>
198h. Angew. Chem., Int. Ed. 2003, 42, 1741.
< S., Sankaran N. B., Samanta A.: https://doi.org/10.1002/anie.200250444>
198i. Int. J. Quantum Chem. 2003, 92, 71.
< A. V., Trubnikov D. N., Vercauteren D. P.: https://doi.org/10.1002/qua.10496>
199a. J. Chem. Phys. 1984, 81, 5417.
< B. J., Dyke T. R., Klemperer W.: https://doi.org/10.1063/1.447641>
199b. J. Chem. Phys. 1989, 90, 2631.
< D. C., Jucks K. W., Miller R. E.: https://doi.org/10.1063/1.455960>
200a. Int. J. Quantum Chem. 2004, 97, 865.
< A., Du D., Zhou Z.: https://doi.org/10.1002/qua.10796>
200b. J. Chem. Phys. 2002, 117, 1621.
< E. M., Otero J. R.: https://doi.org/10.1063/1.1485722>
200c. Int. J. Quantum Chem. 2003, 92, 516.
< L.: https://doi.org/10.1002/qua.10519>
200d. Chem. Eur. J. 2003, 9, 963.
< P. M., Grech E., Barr G., Teat S., Mallinson P., Woźniak K.: https://doi.org/10.1002/chem.200390118>
200e. J. Chem. Phys. 2002, 117, 2790.
< G. C., Legon A. C., Ottaviani P.: https://doi.org/10.1063/1.1488920>
200f. J. Am. Chem. Soc. 2003, 125, 13850.
< S. W., Higgins K. J., Craddock M. B., Brauer C. S., Leopold K. R.: https://doi.org/10.1021/ja030435x>
200g. J. Am. Chem. Soc. 2003, 125, 14065.
< R., Dannenberg J. J.: https://doi.org/10.1021/ja034034t>
200h. J. Chem. Phys. 2003, 118, 5275.
< N. L., Kaposta C., Brümmer M., Helden G. V., Meijer G., Wöste L., Neumark D. M., Asmis K. R.: https://doi.org/10.1063/1.1559478>
200i. J. Am. Chem. Soc. 2002, 124, 4196.
< W. M., Frey P. A., Lin J., Wemmer D. E., Morimoto H., Williams P. G., Markley J. L.: https://doi.org/10.1021/ja017860f>
200j. Mol. Phys. 1970, 19, 372.
< S. F., Bernardi F.: https://doi.org/10.1080/00268977000101561>
200k. Helv. Chim. Acta 2001, 84, 1328.
< L., Zahradník R.: https://doi.org/10.1002/1522-2675(20010613)84:6<1328::AID-HLCA1328>3.0.CO;2-0>
201a. Nature 1962, 68.
< D. J.: https://doi.org/10.1038/195068a0>
201b. J. Phys. Chem. A 2003, 107, 4683.
< B., Hinton J. F., Pulay P.: https://doi.org/10.1021/jp026986b>
201c. J. Am. Chem. Soc. 2003, 125, 12739.
< K., Watanabe H., Kubota M., Fukuda S., Kurimoto M., Tsujisaka Y., Komori M., Inoue Y., Sakurai M.: https://doi.org/10.1021/ja034777e>
201d. J. Phys. Chem. A 2003, 107, 10280.
< , Winter P. R., Stearns J. A., Zwier T. S.: https://doi.org/10.1021/jp036204u>
201e. J. Phys. Chem. A 2003, 107, 6850.
< L., Sanchez-García E., Sander W.: https://doi.org/10.1021/jp034158s>
201f. J. Am. Chem. Soc. 2003, 125, 13910.
< H., Yoshida H., Hieda M., Yamanaka S., Harada T., Shin-ya K., Ohno K.: https://doi.org/10.1021/ja030538f>
201g. J. Am. Chem. Soc. 2002, 124, 7490.
< S. N., Herrebout W. A., van der Veken B. J.: https://doi.org/10.1021/ja0125220>
201h. J. Phys. Chem. A 2003, 107, 10311.
< M. A., Raveendran P., Wallen S. L.: https://doi.org/10.1021/jp027208m>
201i. J. Chem. Phys. 2003, 118, 3499.
< R. D., Bulusu S., Zeng X. C.: https://doi.org/10.1063/1.1535441>
201j. Eur. J. Org. Chem. 2003, 72.
A., Rahman M. M., Bishop R., Craig D. C., Scudder M. L.:
201k. J. Am. Chem. Soc. 2002, 124, 5664.
< J., Engels J. W.: https://doi.org/10.1021/ja012116g>
201l. J. Am. Chem. Soc. 2002, 124, 9639.
< X., Liu L., Schlegel H. B.: https://doi.org/10.1021/ja020213j>
201m. J. Phys. Chem. A. 2003, 107, 9724.
< A., Kryachko E. S.: https://doi.org/10.1021/jp036048r>
201n. J. Am. Chem. Soc. 2002, 124, 8778.
< A., Ristori S., Bonechi C., Panza L., Martini G., Rossi C.: https://doi.org/10.1021/ja016697l>
201o. J. Am. Chem. Soc. 2002, 124, 7163.
< C. E., Houk K. N.: https://doi.org/10.1021/ja012417q>
201p. J. Chem. Phys. 2003, 118, 7283.
< S. A. C.: https://doi.org/10.1063/1.1564059>
201q. Helv. Chim. Acta 2003, 86, 979.
< R., Šroubková L.: https://doi.org/10.1002/hlca.200390115>
202a. Chem. Eur. J. 2001, 7, 2511.
< P., Resnati G.: https://doi.org/10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T>
202b. Chem. Eur. J. 2003, 9, 2676.
< R., Werz D. B., Rausch B. J.: https://doi.org/10.1002/chem.200204684>
202c. J. Chem. Soc., Perkin Trans. 2 1994, 2353.
< V. R., Reddy D. S., Goud B. S., Craig D. C., Rae A. D., Desiraju G. R.: https://doi.org/10.1039/p29940002353>
202d. Chem. Eur. J. 2003, 9, 4548.
< P., Yánez M., Mó O.: https://doi.org/10.1002/chem.200304891>
202e. J. Chem. Phys. 2002, 117, 7931.
< Y.-L., Wang D., Phillips D. L.: https://doi.org/10.1063/1.1511724>
202f. Chem. Eur. J. 2003, 9, 3974.
< A., Forni A., Liantonio R., Metrangolo P., Pilati T., Resnati G.: https://doi.org/10.1002/chem.200204655>
203a. Chem. Eur. J. 2003, 9, 1940.
< F., Hernández-Trujillo J., Tang T.-H., Bader R. F. W.: https://doi.org/10.1002/chem.200204626>
203b. Angew. Chem., Int. Ed. 2003, 42, 1957.
< P., Czugler M., Tellgren R., Kálmán A.: https://doi.org/10.1002/anie.200219504>
203c. Chem. Phys. Lett. 1985, 121, 330.
< Z., Bauwe E., Zahradník R.: https://doi.org/10.1016/0009-2614(85)87187-6>
204. J. Am. Chem. Soc. 1994, 116, 11014.
< J. C., Peris E., Rheingold A. L., Crabtree R. H.: https://doi.org/10.1021/ja00103a017>
205a. J. Am. Chem. Soc. 1995, 117, 12875.
< T. B., De Gala S., Crabtree R. H.: https://doi.org/10.1021/ja00156a032>
205b. J. Am. Chem. Soc. 1999, 121, 6337.
< W. T., Koetzle T. F., Siegbahn P. E. M., Richardson T. B., Crabtree R. H.: https://doi.org/10.1021/ja9825332>
206. J. Am. Chem. Soc. 1995, 117, 10108.
< Q., Hoffmann R.: https://doi.org/10.1021/ja00145a024>
207. Phys. Chem. Chem. Phys. 2004, 6, 5288.
< W., Hobza P.: https://doi.org/10.1039/b410112j>
208a. J. Phys. Chem. B 2003, 107, 12842.
< S., Dannenberg J. J.: https://doi.org/10.1021/jp035791g>
208b. J. Am. Chem. Soc. 2004, 126, 14190.
< P., Kobko N., Wieczorek R., Dannenberg J. J.: https://doi.org/10.1021/ja0492788>
208c. J. Phys. Chem. A 2004, 108, 9205.
< R., Asensio A., Dannenberg J. J.: https://doi.org/10.1021/jp047404o>
209. J. Phys. Chem. A 2003, 107, 6441.
< A., Kobko N., Dannenberg J. J.: https://doi.org/10.1021/jp0344646>
210. J. Am. Chem. Soc. 2002, 124, 10163.
< N. A., Wesolowski S. S., Schaefer III H. F.: https://doi.org/10.1021/ja020009w>
211. Int. J. Quantum Chem. 2003, 91, 695.
< E. S., Sabin J. R.: https://doi.org/10.1002/qua.10462>
212. Int. J. Quantum Chem. 2003, 95, 44.
< A., Elstner M., Suhai S.: https://doi.org/10.1002/qua.10715>
213. Eur. J. Org. Chem. 2003, 2577.
< S., Uchimaru T.: https://doi.org/10.1002/ejoc.200300015>
214. J. Am. Chem. Soc. 2003, 125, 9970.
< N., Kojima N., Hikishima S., Sasaki T., Kiyosue A., Atsumi N., Ueno Y., Matsuda A.: https://doi.org/10.1021/ja0347686>
215. J. Phys. Chem. A 2003, 107, 7911.
< S. G., Jalbout A. F., Hall C. S., Adamowicz L.: https://doi.org/10.1021/jp0304881>
216. J. Chem. Phys. 2003, 118, 5400.
< H., Doltsinis N. L.: https://doi.org/10.1063/1.1555121>
217a. J. Am. Chem. Soc. 2003, 125, 9038.
< B., Jourdan M., Searle M. S.: https://doi.org/10.1021/ja030074l>
217b. J. Am. Chem. Soc. 2002, 124, 11148.
< M., Jarrold M. F.: https://doi.org/10.1021/ja012755r>
218. J. Am. Chem. Soc. 2003, 125, 9170.
< G. A., Ulander J., Wolynes P. G.: https://doi.org/10.1021/ja034729u>
219. J. Chem. Phys. 2004, 120, 2005.
< X., Zhao X.: https://doi.org/10.1063/1.1634955>
220. J. Phys. Chem. A 2003, 107, 5836.
< J., Futrell J. H.: https://doi.org/10.1021/jp0345093>
221. J. Am. Chem. Soc. 2002, 124, 9340.
< E. N., Bundle D. R., Klassen J. S.: https://doi.org/10.1021/ja025908z>
222. J. Chem. Phys. 2002, 117, 8573.
< J., Schlick T.: https://doi.org/10.1063/1.1511506>
223. J. Chem. Phys. 1985, 82, 810.
< J. L., Müller G., Houston P. L., Piltch M., Schmid W. E., Kompa K. L.: https://doi.org/10.1063/1.448507>
224. Chem. Phys. Lett. 1987, 135, 219.
< L. A., Müller-Dethlefs K., Schlag E. W.: https://doi.org/10.1016/0009-2614(87)85145-X>
225. Chem. Phys. Lett. 1990, 173, 435.
< T., Bauder A.: https://doi.org/10.1016/0009-2614(90)87230-O>
226. Aust. J. Chem. 2003, 56, 275.
< R. K., Lawrance W. D.: https://doi.org/10.1071/CH03050>
227. J. Phys. Chem. 1991, 95, 2949.
< U.: https://doi.org/10.1021/j100161a005>
228. Chem. Phys. Lett. 1983, 94, 549.
< N., Suzuki N., Abe H., Mikami N., Ito M.: https://doi.org/10.1016/0009-2614(83)85053-2>
229. Inst. Phys. Conf. Ser. 1991, 199.
M., Piuzzi F., Mons M., Lecalve J., Dimicoli I.:
230. J. Chem. Phys. 1994, 100, 44.
< R., Ray D., Hess W. P.: https://doi.org/10.1063/1.466958>
231. Tong X., Müller-Dethlefs K.: Unpublished results..
232. J. Electron Spectrosc. Reatl. Phenom. 2000, 108, 1.
< S. R., Dessent C. E. H., Müller-Dethlefs K.: https://doi.org/10.1016/S0368-2048(00)00140-7>
233. Tong X.: Ph.D. Thesis. University of York, York 2005.
234. Tong X., Müller-Dethlefs K., Dopfer O., Ishiuchi S., Sakai M., Tsuchida Y., Takeda A., Kawashima Y., Fujii M.: Unpublished results.
235. J. Phys. Chem. 1991, 95, 656.
< G. R., Richie L. D.: https://doi.org/10.1021/j100155a029>
236. Chem. Phys. Lett. 1991, 184, 411.
< H., Ernstberger B., Neusser H. J.: https://doi.org/10.1016/0009-2614(91)80010-U>
237. Ber. Bunsen–Ges. Phys. Chem. 1992, 96, 1183.
< H., Ernstberger B., Neusser H. J.: https://doi.org/10.1002/bbpc.19920960919>
238. Z. Naturforsch., A: Phys. Sci. 1992, 47, 1248.
W., Krätzschmar O., Selzle H. L., Schlag E. W.:
239. J. Chem. Phys. 1993, 98, 4294.
< E., Gutowsky H. S.: https://doi.org/10.1063/1.465035>
240. Chem. Rev. 1994, 94, 1767.
< P., Selzle H. L., Schlag E. W.: https://doi.org/10.1021/cr00031a002>
241. J. Chem. Phys. 1999, 111, 572.
< V., Engvist O., Soldán P., Selzle H. L., Schlag E. W., Hobza P.: https://doi.org/10.1063/1.479338>
242. J. Chem. Phys. 2001, 114, 3949.
< S., Luthi H. P.: https://doi.org/10.1063/1.1344891>
243. J. Am. Chem. Soc. 1983, 105, 3777.
< G., Linse P., Wallquist A., Jonsson B.: https://doi.org/10.1021/ja00350a004>
244. J. Am. Chem. Soc. 2002, 124, 10887.
< M. O., Valeev E. F., Sherrill C. D.: https://doi.org/10.1021/ja025896h>
245. J. Phys. Chem. A 2004, 108, 2941.
< B. W., Tschumper G. S.: https://doi.org/10.1021/jp0369084>
246. J. Phys. Chem. A 2004, 108, 10200.
< M. O., Sherrill C. D.: https://doi.org/10.1021/jp0469517>
247. J. Mol. Biol. 1991, 218, 837.
< C. A., Singh J., Thornton J. M.: https://doi.org/10.1016/0022-2836(91)90271-7>
248a. Nature 2000, 408, 949.
< E., Kleinermanns K., de Vries M. S.: https://doi.org/10.1038/35050053>
248b. J. Chem. Phys. 2001, 115, 4604.
< E., Janzen C., Imhof P., Kleinermanns K., de Vries M. S.: https://doi.org/10.1063/1.1391443>
248c. Phys. Chem. Chem. Phys. 2002, 4, 732.
< E., Janzen C., Imhof P., Kleinermanns K., de Vries M. S.: https://doi.org/10.1039/b107429f>
248d. Phys. Chem. Chem. Phys. 2003, 5, 1158.
< Ch., Hünig P., Kleinermanns K.: https://doi.org/10.1039/b212338j>
249. J. Am. Chem. Soc. 1994, 116, 2493.
< I. R., Kollman P. A.: https://doi.org/10.1021/ja00085a033>
250. J. Phys. Chem. 1996, 100, 5590.
< J., Leszczynski J., Hobza P.: https://doi.org/10.1021/jp953306e>
251. J. Am. Chem. Soc. 2003, 125, 15608.
< P., Hobza P.: https://doi.org/10.1021/ja036611j>
252a. Chem. Phys. Lett. 2002, 365, 89.
< P., Hobza P.: https://doi.org/10.1016/S0009-2614(02)01423-9>
252b. J. Am. Chem. Soc. 2002, 124, 11802.
< P., Šponer J.: https://doi.org/10.1021/ja026759n>
253. J. Chem. Phys. 2003, 118, 6717.
< H., Jung B., Kim S. K.: https://doi.org/10.1063/1.1566438>
254a. J. Chem. Phys. 1999, 111, 10747.
< G. A., Dedonder-Lardeux C., Gregoire G., Jouvet C., Martrenchard S., Solgadi D.: https://doi.org/10.1063/1.480437>
254b. Phys. Chem. Chem. Phys. 2000, 2, 893.
< G., Gregoire G., Dedonder-Lardeux C., Jouvet C., Martrenchard S., Solgadi D.: https://doi.org/10.1039/a908497e>
254c. Chem. Rev. 2000, 100, 4023.
< C., Gregoire G., Jouvet C., Martrenchard S., Solgadi D.: https://doi.org/10.1021/cr990059s>
255a. Phys. Chem. Chem. Phys. 2002, 4,1093.
< A. L., Domcke W., Dedonder-Lardeux C., Jouvet C.: https://doi.org/10.1039/b110941n>
255b. J. Am. Chem. Soc. 2005, 127, 6257.
< S., Sobolewski A. L., Domcke W.: https://doi.org/10.1021/ja044321c>
255c. Science 2004, 306, 1765.
< T., Samoylova E., Radloff W., Hertel I. V., Sobolewski A. L., Domcke W.: https://doi.org/10.1126/science.1104038>
255d. Chem. Phys. 2003, 294, 73.
< A. L., Domcke W.: https://doi.org/10.1016/S0301-0104(03)00388-4>
255e. J. Chem. Phys. 2005, 122, 184320.
< A. L., Domcke W.: https://doi.org/10.1063/1.1896360>
256. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 20.
< A., Grace T., Nir E., Kabeláč M., Hobza P., de Vries M. S.: https://doi.org/10.1073/pnas.0408574102>
257. J. Am. Chem. Soc. 2002, 124, 12958.
< H., Lee K. T., Jung B., Ko Y. J., Kim S. K.: https://doi.org/10.1021/ja027627x>
258. Chem. Phys. 2001, 270, 205.
< F., Mons M., Dimicoli I., Tardivel B., Zhao Q.: https://doi.org/10.1016/S0301-0104(01)00393-7>
259a. J. Chem. Phys. 2003, 119, 5149.
< K., Ishiuchi S., Sakai M., Fujii M., Hashimoto K.: https://doi.org/10.1063/1.1597492>
259b. J. Chem. Phys. 2004, 120, 3215.
< S., Daigoku K., Hashimoto K., Fujii M.: https://doi.org/10.1063/1.1640352>
259c. J. Chem. Phys. 2002, 117, 7077.
< S., Daigoku K., Saeki M., Sakai M., Hashimoto K., Fujii M.: https://doi.org/10.1063/1.1508103>
259d. J. Chem. Phys. 2002, 117, 7083.
< S., Daigoku K., Saeki M., Sakai M., Hashimoto K., Fujii M.: https://doi.org/10.1063/1.1508104>
260. Annu. Rev. Phys. Chem. 2003, 54, 89.
< A.: https://doi.org/10.1146/annurev.physchem.54.011002.103809>
261. Science 2000, 287, 293.
< K., Miller R. E.: https://doi.org/10.1126/science.287.5451.293>
262. Arch. Biochem. Biophys. 2002, 403, 1.
< I.: https://doi.org/10.1016/S0003-9861(02)00202-3>
263. Angew. Chem., Int. Ed. 2003, 42, 1210.
< E. A., Castellano R. K., Diederich F.: https://doi.org/10.1002/anie.200390319>
264. Int. J. Quantum Chem. 2004, 97, 747.
< E., Sulimov V., Zayets V., Zaitseva N.: https://doi.org/10.1002/qua.10778>
265. J. Am. Chem. Soc. 2002, 124, 6274.
< M., Armstrong A., Bartberger M. D.: https://doi.org/10.1021/ja017449s>
266. Chem. Eur. J. 2003, 9, 2110.
< Ch. A., Weyermann P., Dervan P. B.: https://doi.org/10.1002/chem.200204689>
267. Angew. Chem., Int. Ed. 2003, 42, 1765.
< J. S., Chung D. M.: https://doi.org/10.1002/anie.200250750>
268. Angew. Chem., Int. Ed. 2004, 43, 558.
< D. M.: https://doi.org/10.1002/anie.200300606>
269. Angew. Chem., Int. Ed. 2004, 43, 290.
< S. W.: https://doi.org/10.1002/anie.200300581>
270a. Chem. Eur. J. 2003, 9, 3008.
< F., Boileau S., Bouteiller L.: https://doi.org/10.1002/chem.200304801>
270b. Eur. J. Inorg. Chem. 2003, 217.
< F., Jennings M. C., Puddephatt R.: https://doi.org/10.1002/ejic.200390029>