Collect. Czech. Chem. Commun.
2006, 71, 1333-1349
https://doi.org/10.1135/cccc20061333
Terbium Binding in Highly Luminescent Polymer Complexes
Stanislav Kukla, Věra Cimrová and Drahomír Výprachtický*
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
References
1. Chem. Rev. 2002, 102, 2357.
< J., Okamoto Y.: https://doi.org/10.1021/cr010448y>
2. J. Phys. Chem. B 2004, 108, 10796.
< H., Shi M., Gao X. C., Huang Y. Y., Gong Z. L., Nie D. B., Cao H., Bian Z. Q., Li F. Y., Huang C. H.: https://doi.org/10.1021/jp037816h>
3. Chem. Rev. 2002, 102, 2347.
< K., Koike Y., Okamoto Y.: https://doi.org/10.1021/cr010309g>
4. Anal. Chem. 2005, 77, 2643.
< P., Kivelae M., Kuronen O., Hagren V., Takalo H., Tenhu H., Loevgren T., Haermae H.: https://doi.org/10.1021/ac048360i>
5. Coord. Chem. Rev. 1993, 123, 201.
< N., Guardigli M., Lehn J.-M.: https://doi.org/10.1016/0010-8545(93)85056-A>
6. Chem. Rev. 1982, 82, 541.
< F. S.: https://doi.org/10.1021/cr00051a004>
7. Langmuir 2005, 21, 10492.
< D., Burrows H. D., da Graca Miguel M.: https://doi.org/10.1021/la051493u>
8. Biochemistry 1975, 14, 4887.
< T. D., Burchett S., Kizer D. E.: https://doi.org/10.1021/bi00693a016>
9. J. Am. Chem. Soc. 1976, 98, 8255.
< H. G., Richardson F. S., Martin R. B.: https://doi.org/10.1021/ja00441a060>
10. J. Phys. Chem. B 2003, 107, 12862.
< J. G., Snyder G. E., Baym G., Selvin P. R.: https://doi.org/10.1021/jp0357424>
11. Chem. Commun. 2005, 11, 1432.
< D., Comby S., Chauvin A.-S., Bunzli J.-C. G.: https://doi.org/10.1039/b416575f>
12. Polyhedron 2005, 24, 311.
< I., Rohovec J.: https://doi.org/10.1016/j.poly.2004.11.008>
13. Chem. Phys. 2004, 300, 295.
< S., Basu Roy M., Ghosh S.: https://doi.org/10.1016/j.chemphys.2003.12.008>
14. J. Am. Chem. Soc. 2001, 123, 12866.
< T., Mac Donaill D. A., Parker D.: https://doi.org/10.1021/ja004316i>
15. Lehn J.-M. in: Nobel Lectures, Chemistry 1981–1990 (Tore Frängsmyr and Bo G. Malmström, Eds), World Scientific Publishing Co., Singapore 1992.
16. Angew. Chem., Int. Ed. Engl. 1987, 26, 266.
< B., Lehn J.-M., Mathis G.: https://doi.org/10.1002/anie.198702661>
17. J. Polym. Sci., Polym. Chem. 1999, 37, 1341.
< D., Sung K. W., Okamoto Y.: https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1341::AID-POLA14>3.0.CO;2-M>
18. Macromolecules 1998, 31, 9201.
< Y., Kwei T. K., Výprachtický D.: https://doi.org/10.1021/ma980497l>
19. Macromol. Symp. 2004, 212, 239.
< D., Cimrová V., Okamoto Y., Kotva R.: https://doi.org/10.1002/masy.200450824>
20. Macromolecules 1996, 29, 3511.
< S., Výprachtický D., Furuya H., Abe A., Okamoto Y.: https://doi.org/10.1021/ma960251l>
21. Collect. Czech. Chem. Commun. 2004, 69, 309.
< D., Cimrová V., Kukla S., Machová L.: https://doi.org/10.1135/cccc20040309>
22. Macromol. Chem. Phys. 2006, 207, 318.
< D., Cimrová V., Kukla S., Pavlačková P.: https://doi.org/10.1002/macp.200500454>
23. Bioconjugate Chem. 2004, 15, 1088.
< P., Selvin P. R.: https://doi.org/10.1021/bc049915j>
24. Ber. Dtsch. Chem. Ges. 1898, 31, 796.
< E., Byvanck H.: https://doi.org/10.1002/cber.189803101162>
25. J. Org. Chem. 1991, 56, 980.
< A., Rodoghiero P., Pastorini, G., Guiotto A.: https://doi.org/10.1021/jo00003a016>
26. Lakowicz J. R.: Principles of Fluorescence Spectroscopy, 2nd ed. Kluwer Academic/Plenum Publishers, New York 1999.
27. J. Am. Chem. Soc. 1963, 85, 3533.
< R. G.: https://doi.org/10.1021/ja00905a001>
28. Chem. Phys. Lett. 1996, 249, 392.
< G., Sankaran N. B., Samanta A.: https://doi.org/10.1016/0009-2614(95)01407-1>
29. Uray G., Strohmeier G. A., Fabian W. M. F.: 4th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-4). Molecular Diversity Preservation International, Basel 2000; www.mdpi.org/ecsoc.
30. J. Am. Chem. Soc. 1995, 117, 8132.
< M., Selvin P. R.: https://doi.org/10.1021/ja00136a010>
31. Carnall W. T.: Handbook on the Physics and Chemistry of Rare Earths, pp. 171–208. North-Holland Publishing Company, Amsterdam 1979.
32. Bartolo B. D., Kaipidou A. (Eds): Energy Transfer Processes in Condensed Matter. Plenum Press, New York 1984.
33. Ann. Phys. (Leipzig) 1948, 2, 55.
< T.: https://doi.org/10.1002/andp.19484370105>
34. Langmuir 2002, 18, 1872.
< M. J., Burrows H. D.: https://doi.org/10.1021/la015613j>
35. Biochim. Biophys. Acta 1960, 37, 288.
< M. B.: https://doi.org/10.1016/0006-3002(60)90236-5>
36. J. Chem. Phys. 2003, 119, 12621.
< J. M. G., Skepo M., Pais A. A. C. C., Linse P.: https://doi.org/10.1063/1.1625367>
37. J. Phys. Chem. 1957, 61, 1357.
< H.: https://doi.org/10.1021/j150556a022>
38. J. Chem. Phys. 1975, 62, 208.
< G., Wurzberg E.: https://doi.org/10.1063/1.430264>
39. J. Am. Chem. Soc. 1966, 88, 2058.
< A.: https://doi.org/10.1021/ja00961a046>
40. J. Am. Chem. Soc. 1979, 101, 334.
< W. DeW., Jr., Sudnick D. R.: https://doi.org/10.1021/ja00496a010>
41. Inorg. Chem. 1991, 30, 3270.
< R. C., Chang C. A., Horrocks W. DeW., Jr.: https://doi.org/10.1021/ic00017a010>
42. Biophys. J. 1998, 74, 2451.
< E., Cooke R., Selvin P. R.: https://doi.org/10.1016/S0006-3495(98)77953-6>