Collect. Czech. Chem. Commun.
2007, 72, 83-99
https://doi.org/10.1135/cccc20070083
On the Electronic States of S4+ and S4- Isomers
Hanka Sormovaa, Roberto Linguerria, Pavel Rosmusa,*, Jürgen Fabianb and Najia Komihac
a Laboratoire de Chimie Théorique, Université de Marne la Vallée, F 77454 Champs sur Marne, France
b Institut für Organische Chemie, Technische Universität, D-01062 Dresden, Germany
c Laboratoire de Chimie Théorique, Université Mohamed V-Agdal, Faculté de Sciences, 10000 Rabat, Morocco
References
1. I.: Top. Curr. Chem. 2003, 230, 135.
<https://doi.org/10.1007/b12112>
2. R.: Top. Curr. Chem. 2003, 231, 127.
<https://doi.org/10.1007/b13183>
3. E., Boumedien M. S., Corset J.: J. Mol. Struct. 1993, 293, 63.
<https://doi.org/10.1016/0022-2860(93)80015-N>
4. M. S., Corset J., Picquenard E.: J. Raman Spectrosc. 1999, 30, 463.
<https://doi.org/10.1002/(SICI)1097-4555(199906)30:6<463::AID-JRS397>3.0.CO;2-D>
5. G. D., Mielke Z., Andrews L.: J. Phys. Chem. 1991, 95, 79.
<https://doi.org/10.1021/j100154a019>
6. P., Andrews L.: J. Phys. Chem. 1992, 96, 6579.
<https://doi.org/10.1021/j100195a015>
7. B., Stroyer-Hansen T., Oommen T. V.: J. Mol. Spectrosc. 1972, 42, 335.
<https://doi.org/10.1016/0022-2852(72)90089-6>
8. B., Stroyer-Hansen T.: J. Phys. Chem. 1972, 76, 3968.
<https://doi.org/10.1021/j100670a013>
9. G., Hensel F., Warren W. W.: Ber. Bunsen-Ges. Phys. Chem. 1978, 82, 588.
<https://doi.org/10.1002/bbpc.197800123>
10. V. A.: Adv. Space Res. 1987, 7, 25.
<https://doi.org/10.1016/0273-1177(87)90198-0>
11. J., Chupka W. A.: J. Chem. Phys. 1964, 40, 287.
<https://doi.org/10.1063/1.1725111>
12. J., Goldfinger P., Detry D., Rickert H., Keller H.: Adv. Mass Spectrom. 1968, 4, 499.
13. J., Lifshitz C.: J. Chem. Phys. 1968, 48, 4346.
<https://doi.org/10.1063/1.1667997>
14. M. C., Thorwirth S., Gottlieb C. A., Thaddeus P.: J. Chem. Phys. 2004, 121, 632.
<https://doi.org/10.1063/1.1769372>
15. S., McCarthy M. C., Gottlieb C. A., Thaddeus P., Gupta H., Stanton J. F.: J. Chem. Phys. 2005, 123, 54326.
<https://doi.org/10.1063/1.1942495>
16. D., Jones R. O., Car R., Parrinello M.: J. Chem. Phys. 1988, 89, 6823.
<https://doi.org/10.1063/1.455356>
17. D. A., Wasserman E.: J. Phys. Chem. 1990, 94, 5772.
<https://doi.org/10.1021/j100378a032>
18. G. E., Schaefer III H. F., Marsden C.: J. Am. Chem. Soc. 1990, 112, 8719.
<https://doi.org/10.1021/ja00180a012>
19. K., McMichael Rohlfing C., Binkley J. S.: J. Chem. Phys. 1990, 93, 5862.
<https://doi.org/10.1063/1.459583>
20. W.: J. Chem. Phys. 1991, 95, 8301.
<https://doi.org/10.1063/1.461257>
21. V. G., von Niessen W.: Theor. Chim. Acta 1994, 88, 75.
<https://doi.org/10.1007/BF01113735>
22. S., Jones R. O., Ganteför G.: J. Chem. Phys. 1995, 102, 5917.
<https://doi.org/10.1063/1.469326>
23. G., Hunsicker S., Jones R. O.: Chem. Phys. Lett. 1995, 236, 43.
<https://doi.org/10.1016/0009-2614(95)00206-J>
24. J.-L. M., Esseffar M., Herreros M., Mó O., Molina M. T., Notario R., Yañez M.: J. Phys. Chem. A 1998, 102, 7996.
25. G., Goddard J. D.: J. Phys. Chem. A 1999, 103, 6825.
<https://doi.org/10.1021/jp990848d>
26. S., Alparone A.: J. Phys. Chem. A 2001, 105, 9489.
<https://doi.org/10.1021/jp0121466>
27. M. D., Liu M. L., Zheng L. S., Zhang Q. E., Au C. T.: Chem. Phys. Lett. 2001, 350, 119.
<https://doi.org/10.1016/S0009-2614(01)01289-1>
28. M. D., Liu M. L., Liu J. W., Zhang Q. E., Au C. T.: J. Mol. Struct. THEOCHEM 2002, 582, 205.
<https://doi.org/10.1016/S0166-1280(01)00783-7>
29. R. O., Ballone P.: J. Chem. Phys. 2003, 118, 9257.
<https://doi.org/10.1063/1.1568081>
30. M. W., Steudel R.: Chem. Phys. Lett. 2003, 379, 162.
<https://doi.org/10.1016/j.cplett.2003.08.026>
31. B. O., Taylor P., Siegbahn P. E.: Chem. Phys. 1980, 48, 157.
<https://doi.org/10.1016/0301-0104(80)80045-0>
32. D. E., Dunning T. H., Jr.: J. Chem. Phys. 1993, 98, 1358.
<https://doi.org/10.1063/1.464303>
33. Bartlett R. J. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part II, p. 1047. World Scientific, Singapore 1995; and references therein.
34. G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910.
<https://doi.org/10.1063/1.443164>
35. K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479.
<https://doi.org/10.1016/S0009-2614(89)87395-6>
36a. P. J., Hampel C., Werner H.-J.: J. Chem. Phys. 1993, 99, 5219.
<https://doi.org/10.1063/1.465990>
36b. P. J., Hampel C., Werner H.-J.: J. Chem. Phys. 2000, 112, 3106(E).
<https://doi.org/10.1063/1.480886>
37. K. K., Hinze J.: J. Chem. Phys. 1972, 57, 4928.
<https://doi.org/10.1063/1.1678164>
38. E., Gross E. K. U.: Phys. Rev. Lett. 1984, 52, 997.
<https://doi.org/10.1103/PhysRevLett.52.997>
39. Casida M. E. in: Recent Advances in Density-Functional Methods (D. P. Chong, Ed.), p. 155. World Scientific, Singapore 1995.
40. R., Ahlrichs R.: Chem. Phys. Lett. 1996, 256, 454.
<https://doi.org/10.1016/0009-2614(96)00440-X>
41. M. A. L., Gross E. K. U.: Annu. Rev. Phys. Chem. 2004, 55, 427.
<https://doi.org/10.1146/annurev.physchem.55.091602.094449>
42. K., Werschnik J., Gross E. K. U.: J. Chem. Phys. 2005, 123, 62206.
<https://doi.org/10.1063/1.1904586>
43. A. D., Chandler G. S.: J. Chem. Phys. 1980, 72, 5639.
<https://doi.org/10.1063/1.438980>
44. H., Bartlett R. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1984, 26, 255.
<https://doi.org/10.1002/qua.560260826>
45. J., Rittby M., Bartlett R. J.: Chem. Phys. Lett. 1989, 164, 57.
<https://doi.org/10.1016/0009-2614(89)85202-9>
46. J. F., Bartlett R. J.: J. Chem. Phys. 1993, 98, 7029.
<https://doi.org/10.1063/1.464746>
47. GAUSSIAN: A package of ab initio Programs; further information from http://www.gaussian.com/.
48. MOLPRO: A package of ab initio Programs; further information from http://www.molpro.net/.
49. W., Grade M., Hirschwald W.: Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 536.
<https://doi.org/10.1002/bbpc.19830870616>

