Collect. Czech. Chem. Commun.
2007, 72, 100-120
https://doi.org/10.1135/cccc20070100
Correction for Triples in Reduced Multireference Coupled-Cluster Approaches
Josef Paldus* and Xiangzhu Li
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
References
1a. J. Chem. Phys. 1966, 45, 4256.
< J.: https://doi.org/10.1063/1.1727484>
1b. Adv. Chem. Phys. 1969, 14, 35.
J.:
1c. Int. J. Quantum Chem., Quantum Chem. Symp. 1971, 5, 359.
< J., Paldus J.: https://doi.org/10.1002/qua.560050402>
2. Phys. Rev. A 1972, 5, 50.
< J., Čížek J., Shavitt I.: https://doi.org/10.1103/PhysRevA.5.50>
3. NATO ASI Ser., Ser. B 1992, 293, 99.
< J.: https://doi.org/10.1007/978-1-4615-7419-4_7>
4. Bartlett R. J., Stanton J. F. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), Vol. 5, p. 65. VCH, New York 1994.
5. NATO ASI Ser., Ser. B 1994, 318, 207.
< J.: https://doi.org/10.1007/978-1-4899-1340-1_9>
6. Bartlett R. J. in: Modern Electronic Structure Theory (D. R. Yarkony, Ed.), Part I, p. 1047. World Scientific, Singapore 1995.
7. Mahapatra U. S., Datta B., Mukherjee D. in: Recent Advances in Coupled Cluster Methods (R. J. Bartlett, Ed.), p. 155. World Scientific, Singapore 1997.
8. Gauss J. in: Encyclopedia of Computational Chemistry (P. von R. Schleyer, Ed.), Vol. 1, p. 615. Wiley, New York 1998.
9. Adv. Chem. Phys. 1999, 110, 1.
< J., Li X.: https://doi.org/10.1002/9780470141694.ch1>
10. Crawford T. D., Schaefer III H. F. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), Vol. 14, Chap. 2, p. 33. Wiley, New York 2000.
11. Int. Rev. Phys. Chem. 2000, 19, 61.
< J. F., Gauss J.: https://doi.org/10.1080/014423500229864>
12. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, Ed.), Vol. 2, Part 3, Chap. 19, p. 272. Wiley, Chichester 2003.
13. Paldus J. in: Theory and Applications of Computational Chemistry: The First Forty Years (C. F. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria), Chap. 7, p. 115. Elsevier, Amsterdam 2005.
14. Bartlett R. J. in: Theory and Applications of Computational Chemistry: The First Forty Years (C. F. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria), Chap. 42, p. 1191. Elsevier, Amsterdam 2005.
15. Lee T. J., Scuseria G. E. in: Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy (S. R. Langhoff, Ed.), p. 47. Kluver, Dordrecht 1995.
16a. J. Chem. Phys. 1985, 82, 4607.
< K.: https://doi.org/10.1063/1.448718>
16b. Chem. Phys. Lett. 1989, 157, 479.
< K., Trucks G. W., Pople J. A., Head–Gordon M.: https://doi.org/10.1016/S0009-2614(89)87395-6>
17. J. Chem. Phys. 1985, 83, 4041.
< M., Noga J., Cole S. J., Bartlett R. J.: https://doi.org/10.1063/1.449067>
18. Chem. Phys. Lett. 2006, 431, 179.
< X., Paldus J.: https://doi.org/10.1016/j.cplett.2006.09.053>
19. Watts J. D. in: Computational Chemistry: Reviews of Current Trends (J. Leszczynski, Ed.), Vol. 7, p. 89. World Scientific, Singapore 2002.
20a. Int. J. Quantum Chem., Quantum Chem. Symp. 1978, 12, 33.
I.:
20b. Mol. Phys. 1977, 33, 955.
< D., Moitra R. K., Mukhopadhyay A.: https://doi.org/10.1080/00268977700100871>
21. Phys. Rev. A 1981, 24, 1668.
< B., Monkhorst H. J.: https://doi.org/10.1103/PhysRevA.24.1668>
22a. Lindgren I., Morrison J.: Atomic Many-Body Theory. Springer-Verlag, Berlin 1982.
22b. Phys. Rep. 1987, 151, 93.
< I., Mukherjee D.: https://doi.org/10.1016/0370-1573(87)90073-1>
23. Adv. Quantum Chem. 1989, 20, 292.
D., Pal S.:
24. J. Chem. Phys. 1989, 90, 2714.
< B., Paldus J.: https://doi.org/10.1063/1.455919>
25. J. Chem. Phys. 2003, 119, 5320.
< X., Paldus J.: https://doi.org/10.1063/1.1599283>
26a. Int. J. Quantum Chem. 2004, 99, 914.
< X., Paldus J.: https://doi.org/10.1002/qua.20144>
26b. Collect. Czech. Chem. Commun. 2004, 69, 90.
< J., Li X.: https://doi.org/10.1135/cccc20040090>
26c. J. Math. Chem. 2004, 35, 215.
< J., Li X., Petraco N. D. K.: https://doi.org/10.1023/B:JOMC.0000033257.87377.1f>
27. J. Chem. Phys. 1997, 107, 6257.
< X., Paldus J.: https://doi.org/10.1063/1.474289>
28. J. Chem. Phys. 1999, 110, 6171.
< U. S., Datta B., Mukherjee D.: https://doi.org/10.1063/1.478523>
29. Piecuch P., Kowalski K. in: Computational Chemistry: Review of Current Trends (J. Leszczynski, Ed.), Vol. 5, p. 1. World Scientific, Singapore 2000.
30a. J. Chem. Phys. 1998, 108, 6571.
< J., Hubač I., Mach P.: https://doi.org/10.1063/1.476071>
30b. J. Chem. Phys. 1999, 110, 10275.
< J., Nachtigall P., Čársky P., Mášik J., Hubač I.: https://doi.org/10.1063/1.478961>
30c. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Čársky P.: https://doi.org/10.1063/1.481493>
30d. J. Chem. Phys. 2000, 112, 8785.
< J. C., Pittner J., Čársky P., Hubač I.: https://doi.org/10.1063/1.481494>
30e. J. Chem. Phys. 2002, 117, 9580.
< N. D. K., Horný L., Schaefer III H. F., Hubač I.: https://doi.org/10.1063/1.1516802>
30f. J. Chem. Phys. 2002, 117, 9733.
< I. S. K., Pittner J., Čársky P., Mavridis A., Hubač I.: https://doi.org/10.1063/1.1516809>
30g. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
31. J. Chem. Phys. 1993, 99, 1875; and references therein.
< P., Oliphant N., Adamowicz L.: https://doi.org/10.1063/1.466179>
32. J. Chem. Phys. 2005, 123, 134113.
< J. R., Piecuch P., Włoch M.: https://doi.org/10.1063/1.2042452>
33. J. Chem. Phys. 2001, 115, 2014.
< S. R., Head–Gordon M.: https://doi.org/10.1063/1.1383589>
34a. J. Chem. Phys. 2000, 113, 18.
< K., Piecuch P.: https://doi.org/10.1063/1.481769>
34b. J. Chem. Phys. 2000, 113, 5644.
< K., Piecuch P.: https://doi.org/10.1063/1.1290609>
34c. J. Chem. Phys. 2000, 113, 8490.
< K., Piecuch P.: https://doi.org/10.1063/1.1318757>
34d. Chem. Phys. Lett. 2001, 334, 89.
< K., Piecuch P.: https://doi.org/10.1016/S0009-2614(00)01449-4>
34e. Chem. Phys. Lett. 2001, 344, 165.
< K., Piecuch P.: https://doi.org/10.1016/S0009-2614(01)00730-8>
34f. J. Chem. Phys. 2001, 115, 643.
< K., Piecuch P.: https://doi.org/10.1063/1.1378323>
34g. J. Chem. Phys. 2001, 115, 2966.
< K., Piecuch P.: https://doi.org/10.1063/1.1386794>
34h. Theor. Chem. Acc. 2004, 112, 349.
< P., Kowalski K., Pimienta I. S. O., Fan P.-D., Lodriguito M. D., McGuire M. J., Kucharski S. A., Kuś T., Musiał M.: https://doi.org/10.1007/s00214-004-0567-2>
34i. J. Chem. Phys. 2004, 120, 1715.
< K., Piecuch P.: https://doi.org/10.1063/1.1632474>
35a. J. Chem. Phys. 2005, 123, 224105.
< P., Włoch M.: https://doi.org/10.1063/1.2137318>
35b. Chem. Phys. Lett. 2005, 418, 463.
P., Włoch M., Gour J. R., Kinal A.:
35c. Mol. Phys. 2006, 104, 2149.
M., Lodriguito M. D., Piecuch P., Gour J. R.:
36. J. Chem. Phys. 2001, 115, 643.
< K., Piecuch P.: https://doi.org/10.1063/1.1378323>
37a. J. Chem. Phys. 2003, 119, 5334.
< X., Paldus J.: https://doi.org/10.1063/1.1599302>
37b. J. Chem. Phys. 2004, 120, 5890.
< X., Paldus J.: https://doi.org/10.1063/1.1650327>
38a. Theor. Chim. Acta 1994, 89, 13.
< J., Planelles J.: https://doi.org/10.1007/BF01167279>
38b. Theor. Chim. Acta 1994, 89, 33.
< J., Paldus J., Li X.: https://doi.org/10.1007/BF01167280>
38c. Theor. Chim. Acta 1994, 89, 59.
< J., Paldus J., Li X.: https://doi.org/10.1007/BF01167281>
39. Chem. Phys. Lett. 1994, 217, 1.
< L.: https://doi.org/10.1016/0009-2614(93)E1333-C>
40a. Phys. Rev. A 1984, 30, 2193.
< J., Čížek J., Takahashi M.: https://doi.org/10.1103/PhysRevA.30.2193>
40b. Phys. Rev. B 1984, 30, 4267.
< J., Takahashi M., Cho R. W. H.: https://doi.org/10.1103/PhysRevB.30.4267>
40c. Phys. Rev. B 1985, 31, 5121.
< M., Paldus J.: https://doi.org/10.1103/PhysRevB.31.5121>
41. Phys. Rev. A 1996, 54, 1210.
< P., Toboła R., Paldus J.: https://doi.org/10.1103/PhysRevA.54.1210>
42a. Chem. Phys. Lett. 1981, 80, 69.
< R. A., Dykstra C. E.: https://doi.org/10.1016/0009-2614(81)80059-0>
42b. J. Chem. Phys. 1981, 75, 2270.
< S. M., Chiles R. A., Dykstra C. E.: https://doi.org/10.1063/1.442288>
42c. J. Chem. Phys. 1986, 85, 5877.
< S.-Y., Daskalakis M. F., Dykstra C. E.: https://doi.org/10.1063/1.451549>
42d. J. Chem. Phys. 1986, 85, 5120.
< D. E., Liu S.-Y., Dykstra C. E.: https://doi.org/10.1063/1.451705>
42e. Chem. Phys. Lett. 1987, 137, 266.
< C. E., Liu S.-Y., Daskalakis M. F., Lucia J. P., Takahashi M.: https://doi.org/10.1016/0009-2614(87)80217-8>
42f. Dykstra C. E.: Ab Initio Calculation of the Structure and Properties of Molecules. Elsevier, Amsterdam 1988.
43a. Int. J. Quantum Chem. 1980, 18, 1243.
< K., Paldus J.: https://doi.org/10.1002/qua.560180511>
43b. Collect. Czech. Chem. Commun. 1988, 53, 1919.
< J., Wormer P. E. S., Bénard M.: https://doi.org/10.1135/cccc19881919>
43c. Phys. Rev. A 1981, 24, 2316.
< B. G., Jankowski K., Paldus J.: https://doi.org/10.1103/PhysRevA.24.2316>
43d. Phys. Rev. A 1981, 24, 2330.
< B. G., Jankowski K., Paldus J.: https://doi.org/10.1103/PhysRevA.24.2330>
44. Theor. Chim. Acta 1991, 80, 321.
< S. A., Balková A., Bartlett R. J.: https://doi.org/10.1007/BF01117416>
45. Int. J. Quantum Chem. 1992, 42, 165.
< P., Čížek J., Paldus J.: https://doi.org/10.1002/qua.560420111>
46. Int. J. Quantum Chem. 1995, 55, 133.
< P., Toboła R., Paldus J.: https://doi.org/10.1002/qua.560550208>
47. J. Chem. Phys. 1995, 103, 4990.
< J. P., Chaudhuri R. K., Freed K. F.: https://doi.org/10.1063/1.470586>
48. J. Chem. Phys. 1996, 104, 4699.
< P., Kondo A. E., Špirko V., Paldus J.: https://doi.org/10.1063/1.471164>
49. Chem. Phys. Lett. 1993, 210, 243.
< P., Toboła R., Paldus J.: https://doi.org/10.1016/0009-2614(93)89129-6>
50a. J. Mol. Struct. (THEOCHEM) 2006, 768, 25.
< M., Le Roy R. J.: https://doi.org/10.1016/j.theochem.2006.05.017>
50b. Nooijen M.: Private communication.
51. J. Chem. Phys. 2006, 125, 204105.
< R. J., Musiał M.: https://doi.org/10.1063/1.2387952>
52. J. Chem. Phys. 1990, 93, 1485.
< J., Čížek J., Jeziorski B.: https://doi.org/10.1063/1.459164>
53a. J. Chem. Phys. 1997, 107, 90.
< X., Peris G., Planelles J., Rajadell F., Paldus J.: https://doi.org/10.1063/1.474355>
53b. Int. J. Quantum Chem. 1997, 62, 137.
< G., Planelles J., Paldus J.: https://doi.org/10.1002/(SICI)1097-461X(1997)62:2<137::AID-QUA2>3.0.CO;2-X>
53c. Mol. Phys. 1998, 94, 235.
< G., Rajadell F., Li X., Planelles J., Paldus J.: https://doi.org/10.1080/00268979809482312>
54a. Israel J. Chem. 1991, 31, 351.
< J., Li X.: https://doi.org/10.1002/ijch.199100040>
54b. J. Mol. Struct. (THEOCHEM) 1991, 229, 249.
< X., Paldus J.: https://doi.org/10.1016/0166-1280(91)90149-E>
54c. Int. J. Quantum Chem. 1992, 41, 117.
< X., Paldus J.: https://doi.org/10.1002/qua.560410112>
54d. Paldus J., Li X. in: Group Theory in Physics, AIP Conference Proceedings (A. Frank, T. H. Seligman and K. B. Wolf, Eds), No. 266, p. 159. American Institute of Physics, New York 1992.
54e. Paldus J., Li X. in: Pauling’s Legacy: Modern Modelling of the Chemical Bond, Theoretical and Computational Chemistry Series (Z. B. Maxić and W. J. Orville-Thomas, Eds), Vol. 6, Chap. 17, p. 481. Elsevier, Amsterdam 1999.
54f. Paldus J., Li X. in: Symmetries in Science VI: From the Rotation Group to Quantum Algebras (B. Gruber, Ed.), p. 573. Plenum Press, New York 1993.
55a. J. Chem. Phys. 2005, 123, 074106.
< T., Hino O., Bartlett R. J.: https://doi.org/10.1063/1.2000251>
55b. J. Chem. Phys. 2006, 124, 114311.
< O., Kinoshita T., Chan G. K.-L., Bartlett R. J.: https://doi.org/10.1063/1.2180775>
56. J. Chem. Phys. 2006, 125, 164107.
< X., Paldus J.: https://doi.org/10.1063/1.2361295>
57. J. Chem. Phys. 2003, 118, 6769.
< J., Li X.: https://doi.org/10.1063/1.1560133>
58a. J. Chem. Phys. 1998, 108, 637.
< X., Paldus J.: https://doi.org/10.1063/1.475425>
58b. Chem. Phys. Lett. 1998, 286, 145.
< X., Paldus J.: https://doi.org/10.1016/S0009-2614(97)01132-9>
58c. Collect. Czech. Chem. Commun. 1998, 63, 1381.
< X., Paldus J.: https://doi.org/10.1135/cccc19981381>
58d. J. Chem. Phys. 1999, 110, 2844.
< X., Paldus J.: https://doi.org/10.1063/1.477926>
58e. Mol. Phys. 2000, 98, 1185.
< X., Paldus J.: https://doi.org/10.1080/00268970050080546>
58f. J. Chem. Phys. 2000, 113, 9966.
< X., Paldus J.: https://doi.org/10.1063/1.1323260>
58g. Int. J. Quantum Chem. 2000, 80, 743.
< X., Paldus J.: https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
58h. J. Mol. Struct. (THEOCHEM) 2001, 547, 69.
< X.: https://doi.org/10.1016/S0166-1280(01)00460-2>
58i. J. Chem. Phys. 2002, 117, 1941.
< X., Paldus J.: https://doi.org/10.1063/1.1488597>
58j. J. Chem. Phys. 2003, 118, 2470.
< X., Paldus J.: https://doi.org/10.1063/1.1535438>
59a. Top. Curr. Chem. 1999, 203, 1.
< J., Li X.: https://doi.org/10.1007/3-540-48972-X_1>
59b. J. Chem. Phys. 2001, 115, 5759.
< X., Paldus J.: https://doi.org/10.1063/1.1398088>
59c. J. Chem. Phys. 2001, 115, 5774.
< X., Paldus J.: https://doi.org/10.1063/1.1398089>
59d. Paldus J., Li X. in: Advances in Quantum Many Body Theory (R. F. Bishop, T. Brandes, K. A. Gernoth, N. R. Walet and Y. Xian, Eds), Vol. 5, p. 393. World Scientific, Singapore 2002.
59e. ACS Symp. Ser. 2002, 828, 10.
< X., Paldus J.: https://doi.org/10.1021/bk-2002-0828.ch002>
59f. Collect. Czech. Chem. Commun. 2003, 68, 554.
< J., Li X.: https://doi.org/10.1135/cccc20030554>
60. J. Chem. Phys. 2003, 119, 5334.
< X., Paldus J.: https://doi.org/10.1063/1.1599302>
61a. J. Chem. Phys. 2006, 124, 174101.
< X., Paldus J.: https://doi.org/10.1063/1.2194543>
61b. Mol. Phys. 2006, 104, 2047.
< X., Paldus J.: https://doi.org/10.1080/00268970600659560>
62. J. Chem. Phys. 2006, 124, 034112.
< X., Paldus J.: https://doi.org/10.1063/1.2151893>
63. Int. J. Quantum Chem. 2005, 101, 201.
< I., Veseth L.: https://doi.org/10.1002/qua.20222>
64. J. Chem. Phys. 1981, 74, 4544.
< R. A., Dykstra C. F.: https://doi.org/10.1063/1.441643>
65a. J. Chem. Phys. 1984, 80, 4371.
< Y. S., Bartlett R. J.: https://doi.org/10.1063/1.447214>
65b. J. Chem. Phys. 1988, 88, 5974.
< C., Noga J., Bartlett R. J.: https://doi.org/10.1063/1.454511>
66. Chem. Phys. 1988, 125, 255.
< I., Noga J., Diercksen G. H. F., Sadlej A. J.: https://doi.org/10.1016/0301-0104(88)87079-4>
67. Chem. Phys. Lett. 1992, 199, 497.
< J., Kutzelnigg W., Klopper W.: https://doi.org/10.1016/0009-2614(92)87034-M>
68. Chem. Phys. Lett. 1999, 303, 399.
< J. M. L.: https://doi.org/10.1016/S0009-2614(99)00214-6>
69. Chem. Phys. Lett. 2005, 405, 43.
< V. F., Bartlett R. J., Grabowski I.: https://doi.org/10.1016/j.cplett.2005.01.066>
70. J. Chem. Phys. 1984, 80, 568.
< V. E., English J. H.: https://doi.org/10.1063/1.446434>
71. Chem. Phys. Lett. 1984, 109, 436.
< V. E.: https://doi.org/10.1016/0009-2614(84)80339-5>
72a. J. Chem. Phys. 1983, 79, 5520.
< I.: https://doi.org/10.1063/1.445670>
72b. Int. J. Quantum Chem. 1990, 38, 585.
< I.: https://doi.org/10.1002/qua.560380408>
73. Int. J. Quantum Chem. 1996, 60, 453.
< I., Almlöf J.: https://doi.org/10.1002/(SICI)1097-461X(1996)60:1<453::AID-QUA44>3.0.CO;2-A>
74a. Theor. Chim. Acta 1975, 39, 217.
< R. J., Peyerimhoff S. D.: https://doi.org/10.1007/BF00555301>
74b. Mol. Phys. 1978, 35, 771.
< R. J., Peyerimhoff S. D., Butscher W.: https://doi.org/10.1080/00268977800100581>
74c. J. Mol. Struct. (THEOCHEM) 1985, 123, 291.
< R. J., Phillips R. A.: https://doi.org/10.1016/0166-1280(85)80172-X>
75. Can. J. Chem. 1996, 74, 998.
< P. J., Wright J. S.: https://doi.org/10.1139/v96-111>
76. Chem. Phys. Lett. 1996, 258, 400.
< L., Szalay P. G.: https://doi.org/10.1016/0009-2614(96)00672-0>
77. Chem. Phys. Lett. 1996, 258, 421.
< J., Meyer W.: https://doi.org/10.1016/0009-2614(96)00657-4>
78. J. Mol. Struct. (THEOCHEM) 1999, 461–462, 177.
< L. A., Kaledin A. L., Heaven M. C., Bondybey V. E.: https://doi.org/10.1016/S0166-1280(98)00425-4>
79. Chem. Phys. Lett. 1999, 312, 578.
< R. J.: https://doi.org/10.1016/S0009-2614(99)00985-9>
80. J. Mol. Spectrosc. 2006, 235, 268.
< V.: https://doi.org/10.1016/j.jms.2005.11.012>
81. Adv. At. Mol. Phys. 1983, 19, 265.
< F.: https://doi.org/10.1016/S0065-2199(08)60255-9>
82. Špirko V.: Private communication.
83. http://srdata.nist.gov/cccbdb; section II, Experimental data.