Collect. Czech. Chem. Commun.
2007, 72, 1472-1498
https://doi.org/10.1135/cccc20071472
Pentenolide Analogues of Antifungal Butenolides: Strategies Towards 3,6-Disubstituted Pyranones and Unexpected Loss of Biological Effect
Ivan Šnajdr, Jan Pavlík, Radan Schiller, Jiří Kuneš and Milan Pour*
Centre For New Antivirals and Antineoplastics, Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
References
1. L. A., Davies-Coleman M. T., Rivett D. E. A.: Fortschr. Chem. Org. 1998, 75, 181.
2. D. S., Gauss C.-M., Soenen D. R., Boger D. L.: Curr. Med. Chem. 2002, 9, 2005.
<https://doi.org/10.2174/0929867023368809>
3a. T., Nozawa K., Lumley T. C., Currah R. S., Fukushima K., Takizawa K., Miyaji M., Kawai K.: Chem. Pharm. Bull. 1999, 47, 1591.
<https://doi.org/10.1248/cpb.47.1591>
3b. A. F., Arseniyadis S., Moral J., Herrador M., Valdivia M., Jimenez D.: J. Org. Chem. 2002, 67, 2501.
<https://doi.org/10.1021/jo0161882>
4. S. F., Clardy J.: J. Nat. Prod. 2000, 63, 1447.
<https://doi.org/10.1021/np990568p>
5a. M., Špulák M., Buchta V., Kubanová P., Vopršalová M., Wsól V., Fáková H., Koudelka P., Pourová H., Schiller R.: J. Med. Chem. 2001, 44, 2701.
<https://doi.org/10.1021/jm010155x>
5b. V., Pour M., Kubanová P., Silva L., Votruba I., Vopršálová M., Schiller R., Fáková H., Špulák M.: Antimicrob. Agents Chemother. 2004, 48, 873.
<https://doi.org/10.1128/AAC.48.3.873-878.2004>
6. M., Špulák M., Balšánek V., Kuneš J., Kubanová P., Buchta V.: Bioorg. Med. Chem. 2003, 11, 2843.
<https://doi.org/10.1016/S0968-0896(03)00220-7>
7a. C. V., Srinivas B., Puranik V. G., Gurjar M. K.: J. Org. Chem. 2005, 70, 8216.
<https://doi.org/10.1021/jo050972v>
7b. J. A., Adams N. D.: J. Org. Chem. 1999, 64, 5201.
<https://doi.org/10.1021/jo9823083>
7c. E., Eatherton A., Frampton C. S., Kahn I., Redshaw S.: Synlett 2004, 684.
<https://doi.org/10.1055/s-2004-815439>
7d. M., Wang W., Tsutsui Y., Sugimoto M., Murakami N.: Tetrahedron Lett. 1998, 39, 8291.
<https://doi.org/10.1016/S0040-4039(98)01809-7>
8. G., Gressot-Kempf L.: Tetrahedron: Asymmetry 1996, 7, 2371.
<https://doi.org/10.1016/0957-4166(96)00292-3>
9. M. S., Luckhurst C. A., Dixon D.: J. Org. Lett. 2005, 7, 5813.
<https://doi.org/10.1021/ol052333c>
10a. L. C., Meira P. R. R.: Tetrahedron Lett. 2002, 43, 8883.
<https://doi.org/10.1016/S0040-4039(02)02200-1>
10b. J. A., Bourbeau M. P.: J. Org. Chem. 2002, 67, 2751.
<https://doi.org/10.1021/jo016025d>
10c. A. B., Forsyth C. J.: Org. Lett. 2001, 3, 975.
10d. T. M., Florence G. J., Lugo-Mas P., Chen J., Abrams J. N., Forsyth C. J.: Tetrahedron Lett. 2003, 44, 57.
<https://doi.org/10.1016/S0040-4039(02)02489-9>
10e. M., Chandra K. L., Singh V. K.: J. Org. Chem. 2003, 68, 4039.
<https://doi.org/10.1021/jo0269058>
11. V., Broustal G., Campagne J. M.: Eur. J. Org. Chem. 2007, 225.
<https://doi.org/10.1002/ejoc.200600570>
12. M., Špulák M., Balšánek V., Kuneš J., Buchta V., Waisser K.: Bioorg. Med. Chem. Lett. 2000, 10, 1893.
<https://doi.org/10.1016/S0960-894X(00)00376-0>
13. C., David M., Carreaux F., Carboni B., Sauleau A.: Tetrahedron Lett. 1997, 38, 5153.
<https://doi.org/10.1016/S0040-4039(97)01098-8>
14a. F., Deschenaux P., Kallimopoulos T., Jacot-Guillamord A.: Helv. Chim. Acta 1991, 74, 141.
<https://doi.org/10.1002/hlca.19910740116>
14b. P., Grison C., Bowent C.: Tetrahedron Lett. 1994, 35, 8381.
<https://doi.org/10.1016/S0040-4039(00)74412-1>
14c. P., Grison C., Bowent C.: J. Organomet. Chem. 1999, 586, 208.
<https://doi.org/10.1016/S0022-328X(99)00269-7>
15a. T. R., Humpal P. E., Jimbez J. I., Mayer M. J., Tan L., Ye Z.: Tetrahedron Lett. 1994, 35, 7517.
<https://doi.org/10.1016/S0040-4039(00)78332-8>
15b. T., Copéret Ch., Owczarczyk Z., Harring L. S., Negishi E.: J. Am. Chem. Soc. 1994, 116, 7923.
<https://doi.org/10.1021/ja00096a070>
16. R., Pour M., Fáková H., Kuneš J., Císařová I.: J. Org. Chem. 2004, 69, 6761.
<https://doi.org/10.1021/jo049114+>
17. H., Pour M., Kuneš J., Šenel P.: Tetrahedron Lett. 2005, 46, 8137.
<https://doi.org/10.1016/j.tetlet.2005.09.128>
18a. E., Zhang S.-W., Zhou D.-Y., Onitsuka K., Takahashi S.: J. Org. Chem. 2003, 68, 8571.
<https://doi.org/10.1021/jo0350615>
18b. E., Kaneko T., Zhang S.-W., Onitsuka K., Takahashi S.: Org. Lett. 2000, 2, 441.
<https://doi.org/10.1021/ol990377d>
19a. Ch., Ma S., Sugihara T., Negishi E.: Tetrahedron 1996, 52, 11529.
<https://doi.org/10.1016/0040-4020(96)00640-0>
19b. Ch., Sugihara T., Negishi E.: Tetrahedron Lett. 1995, 36, 1771.
<https://doi.org/10.1016/0040-4039(95)00120-2>
20. C., Troisi L., Ronzini L.: Heterocycles 2004, 63, 1027.
21. M., Hirao I.: Tetrahedron Lett. 1983, 24, 391.
<https://doi.org/10.1016/S0040-4039(00)81416-1>
22a. J., Shearer B., Crooks S.: J. Org. Chem. 1987, 52, 1236.
<https://doi.org/10.1021/jo00383a012>
22b. S. E., Jones T. K.: J. Org. Chem. 1982, 47, 4595.
<https://doi.org/10.1021/jo00144a044>
23. S., Liu F., Negishi E.: Tetrahedron Lett. 1997, 38, 3829.
<https://doi.org/10.1016/S0040-4039(97)00764-8>
24. J. P., Buchwald S. L.: Angew. Chem., Int. Ed. Engl. 1999, 38, 2413.
<https://doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2413::AID-ANIE2413>3.0.CO;2-H>
25. M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817.
<https://doi.org/10.1021/jm991167+>
26. L. A., Buchta V., Vokurková D., Pour M.: Bioorg. Med. Chem. Lett. 2006, 16, 2492.
<https://doi.org/10.1016/j.bmcl.2006.01.094>

