Collect. Czech. Chem. Commun. 2007, 72, 1591-1630
https://doi.org/10.1135/cccc20071591

Boron-Containing Functional Copolymers for Bioengineering Applications

Zakir M. O. Rzayev* and Oktay Beşkardeş

Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey

References

1. James T. D., Sandanayake S., Shinkai S.: Angew. Chem., Int. Ed. Engl. 1996, 35, 1910. <https://doi.org/10.1002/anie.199619101>
2. Howhorne M.: Angew. Chem., Int. Ed. Engl. 1993, 32, 950.
3. Smith B. D., Gardiner S. J.: Adv. Supramol. Chem. 1999, 5, 157. <https://doi.org/10.1016/S1068-7459(99)80015-0>
4. Kettner C. A., Shenvi A. B.: J. Biol. Chem. 1984, 259, 15106.
5. Simon J., Salzbrunn S., Prakash G. K. S., Petasis N. A., Olah G. A.: J. Org. Chem. 2001, 66, 633. <https://doi.org/10.1021/jo0015873>
6. Ma K., Scheibitz M., Scholz S., Wagner M.: J. Organomet. Chem. 2002, 652, 11. <https://doi.org/10.1016/S0022-328X(02)01303-7>
7. Recksiedler C. L., Deore B. A., Freund M. S.: Langmuir 2005, 21, 3670. <https://doi.org/10.1021/la047195z>
8. Shoji E., Freund M. S.: J. Am. Chem. Soc. 2001, 123, 3383. <https://doi.org/10.1021/ja005906j>
9. Nicolas M., Fabre B., Marchand G., Simonet J.: Eur. J. Org. Chem. 2000, 9, 1703. <https://doi.org/10.1002/(SICI)1099-0690(200005)2000:9<1703::AID-EJOC1703>3.0.CO;2-S>
10. Siebert W. (Ed.): Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge 1987.
11. Mishima Y. (Ed.): Cancer Neutron Capture Therapy. Plenum Press, New York 1996.
12. Ichihashi M., Nakanishi T., Mishima Y. J.: Invest. Dermatol. 1982, 78, 215. <https://doi.org/10.1111/1523-1747.ep12506489>
13. Schwyzer R., Do K. Q., Eberle A. N., Fauchere L.: Helv. Chim. Acta 1981, 64, 2078. <https://doi.org/10.1002/hlca.19810640712>
14. Soloway A. N.: J. Am. Chem. Soc. 1959, 81, 3017. <https://doi.org/10.1021/ja01521a025>
15. Zaidlewiez M., Cutarska J., Dzielendziak A., Ziegler-Borowska M.: ARKIVOC 2004, 3, 11.
16. Hawthorne M. F.: Angew. Chem., Int. Ed. Engl. 1993, 32, 950. <https://doi.org/10.1002/anie.199309501>
17. Pan X. Q., Wang, H., Shukla S., Sekido M., Adams D. M., Tjarks W., Barth R. F., Lee R. J.: Bioconjugate Chem. 2002, 13, 435. <https://doi.org/10.1021/bc015557y>
18. Shelly K., Feaks D. A., Hawthorne M. F., Schmidt P. G., Krisch T. A., Bauer W. F.: Prog. Natl. Acad. Sci. 1992, 89, 9039. <https://doi.org/10.1073/pnas.89.19.9039>
19. Hoffmann A. K., Groszos S. J., Thomas W. M.: U.S. 2934556 (1960); Chem. Abstr. 1960, 54, 17372.
20a. Hoffmann A. K., Thomas W. M.: U.S. 2931788 (1960); Chem. Abstr. 1960, 54, 14796.
20b. Hoffmann A. K., Thomas W. M.: U.S. 2934526 (1960); Chem. Abstr. 1960, 54, 17327.
21. Pellon J., Schwind L. H., Guinard M. J., Thomas W. M.: J. Polym. Sci. 1961, 55, 161. <https://doi.org/10.1002/pol.1961.1205516117>
22. Pellon J., Deichert. W. G., Thomas W. M.: J. Polym. Sci. 1961, 55, 153. <https://doi.org/10.1002/pol.1961.1205516116>
23. Yang Q., Cheng G., Parab K., Sundararaman A., Jakle F.: Macromol. Symp. 2003, 196, 337.
24. Fraser C. L., Smith A. P.: J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4704. <https://doi.org/10.1002/1099-0518(200012)38:1+<4704::AID-POLA100>3.0.CO;2-Y>
25. Lohmeijer B. G. G., Schubert U. S.: Angew. Chem. Int. Ed. 2002, 41, 3825. <https://doi.org/10.1002/1521-3773(20021018)41:20<3825::AID-ANIE3825>3.0.CO;2-6>
26. De Vos D. E., Vankelecom I. F. J., Jacobs P. A.: Chiral Catalyst Immobilization and Recycling. Wiley–VCH, New York 2000.
27. Sherrington D. C., Kybetti A. C.: Supported Catalysts and Their Applications. Royal Society of Chemistry, Cambridge 2001.
28. Appleton B., Gibson T. D.: Sens. Actuators, B 2000, 65, 302. <https://doi.org/10.1016/S0925-4005(99)00299-3>
29. Nicolas M., Fabre B., Simonet J.: J. Electroanal. Chem. 2001, 509, 73. <https://doi.org/10.1016/S0022-0728(01)00374-6>
30. Boffa L. S., Novak B. M.: Chem. Rev. 2000, 100, 1479. <https://doi.org/10.1021/cr990251u>
31. Kondo Y., Garcia-Cuadrado D., Hartwig J. F., Boaen N. K., Wagner N. L., Hillmyer M. A.: J. Am. Chem. Soc. 2002, 124, 1164. <https://doi.org/10.1021/ja016763j>
32. Metha M. A., Fujinami T., Iniue T.: J. Power Sources 1999, 81–82, 724.
33. Matsumi N., Sugai K., Ohno H.: Macromolecules 2002, 35, 5731. <https://doi.org/10.1021/ma0121666>
34. Sun X., Angell C. A.: Electrochim. Acta 2001, 46, 1467. <https://doi.org/10.1016/S0013-4686(00)00741-6>
35. Armitage P., Ebdon J. R., Hunt B. J., Jones M. S., Thorpe F. G.: Polym. Degrad. Stab. 1996, 54, 387. <https://doi.org/10.1016/S0141-3910(96)00069-9>
36. Gao J., Liu Y., Wang F.: Eur. Polym. J. 2001, 37, 207. <https://doi.org/10.1016/S0014-3057(00)00095-1>
37. Seyferth D.: Adv. Chem. Ser. 1995, 245, 131.
38. Riedel R., Kroke E., Greiner A., Gabriel A. O., Ruwisch L., Nicolich J., Kroll P.: Chem. Mater. 1998, 10, 2964. <https://doi.org/10.1021/cm980261w>
39. Weinmann M., Kamphowe T. W., Schulmacher J., Müller K., Aldinger F.: Chem. Mater. 2000, 12, 2112. <https://doi.org/10.1021/cm001031w>
40. Kho J.-G., Moon K.-T., Nouet G., Ruterana P., Kim D.-P.: Thin Solid Films 2001, 389, 78. <https://doi.org/10.1016/S0040-6090(01)00760-X>
41. Matsumi N., Naka K., Chujo Y.: J. Am. Chem. Soc. 1998, 120, 3112.
42. Brunner A. R., Bujalski D. R., Moyer E. S., Su K., Aldinger F.: Chem. Mater. 2000, 12, 2770. <https://doi.org/10.1021/cm000317y>
43. Valliant J. F., Guenther A. S., King P., Morel P., Schaffer O. O., Sogbein K. A. S.: Coord. Chem. Rev. 2000, 232, 173. <https://doi.org/10.1016/S0010-8545(02)00087-5>
44. Parrott M. C., Marchington E. B., Valliani J. F., Adronov A.: Macromol. Symp. 2003, 196, 201. <https://doi.org/10.1002/masy.200390161>
45. Uguzdogan E., Denktaş E. B., Tuncel A.: Macromol. Biosci. 2002, 2, 214. <https://doi.org/10.1002/1616-5195(200206)2:5<214::AID-MABI214>3.0.CO;2-D>
46. Kataoka K., Miyazaki H., Okano T., Sakurai Y.: Macromolecules 1994, 27, 1061. <https://doi.org/10.1021/ma00082a028>
47. Schott H., Rudolff E., Schmidt P., Roychoudhury R., Kössel H.: Biochemistry 1973, 12, 932. <https://doi.org/10.1021/bi00729a022>
48. Olsson R. A.: J. Chromatogr. 1979, 176, 239. <https://doi.org/10.1016/S0021-9673(00)85657-5>
49. Maestas R. R., Prieto J. R., Kuehn G. D., Hageman J. H.: J. Chromatogr. 1980, 189, 225. <https://doi.org/10.1016/S0021-9673(00)81522-8>
50. Bouriotis V., Galpin I. J., Gean P. D. G.: J. Chromatogr. 1981, 210, 267. <https://doi.org/10.1016/S0021-9673(00)97837-3>
51. Koyama T., Terauchi K.: J. Chromatogr., B: Biomed. Appl. 1996, 679, 31. <https://doi.org/10.1016/0378-4347(96)00006-0>
52. Ozdemir A., Tuncel A.: J. Appl. Polym. Sci. 2000, 78, 268. <https://doi.org/10.1002/1097-4628(20001010)78:2<268::AID-APP50>3.0.CO;2-D>
53. Tuncel A., Ozdemir A.: J. Biomater. Sci. Polym. Ed. 2000, 11, 817. <https://doi.org/10.1163/156856200744039>
54. Senel S., Camli T., Tuncel M., Tuncel A.: J. Chromatogr., B: Biomed. Appl. 2002, 769, 283. <https://doi.org/10.1016/S1570-0232(02)00011-9>
55. Aoki T., Nagao Y., Sanui K., Ogata N., Kikuchi A., Sakurai Y., Kataoka K., Okano T.: Polym. J. 1996, 28, 371. <https://doi.org/10.1295/polymj.28.371>
56. Hisamitsu I., Kataoka K., Okano T., Sakurai Y.: Pharm. Res. 1997, 14, 289. <https://doi.org/10.1023/A:1012033718302>
57. Lorand J. P., Edwards L. O.: J. Org. Chem. 1959, 24, 769. <https://doi.org/10.1021/jo01088a011>
58. Shiomi Y., Saisho M., Tsukagosi K., Shinkai S.: J. Chem. Soc., Perkin Trans. 1 1993, 2111. <https://doi.org/10.1039/p19930002111>
59. Moore A. N. J., Wayner D. D. M.: Can. J. Chem. 1999, 77, 681. <https://doi.org/10.1139/cjc-77-5-6-681>
60. Wilkins E., Atanasov P.: Med. Eng. Phys. 1996, 18, 273. <https://doi.org/10.1016/1350-4533(95)00046-1>
61. McQuade D. T., Pullen A. E., Swager T. M.: Chem. Rev. 2000, 100, 2537. <https://doi.org/10.1021/cr9801014>
62. Shull B. K., Spielvogel D. E., Gopalaswamy R., Sankar S., Boyle P. D., Head G., Detivo K.: J. Chem. Soc., Perkin Trans. 2 2000, 557. <https://doi.org/10.1039/a906038c>
63. Hall I. H., Henry J. R., Peaty N. J., Barnes B. J., Pawelke G.: Appl. Organomet. Chem. 2000, 14, 86. <https://doi.org/10.1002/(SICI)1099-0739(200002)14:2<86::AID-AOC957>3.0.CO;2-Y>
64. Carter C. A. G., Vogels C. M., Harrison D. J., Gagnon M. K. J., Norman D. W., Langler R. F., Baker R. T., Westcott S. A.: Organometallics 2001, 20, 2130. <https://doi.org/10.1021/om010135t>
65. Stoll V. S., Eger D. T., Hynes R. C., Martichonok V., Jones J. B., Pai E. F.: Biochemistry 1998, 37, 451. <https://doi.org/10.1021/bi971166o>
66. Westmark P. R., Gardiner S. J., Smith B. D.: J. Am. Chem. Soc. 1996, 118, 11093. <https://doi.org/10.1021/ja961264h>
67. Busse P. M., Zamenhof R. G., Harling O. K., Solares F. R., Tishler R., Stevenson R., Coleman N., Shafman T., Kaplan I., Norregaard T.: The Clinical State of Boron Neutron Capture Therapy Workshop. Department of Energy, Charlotte (NC) Nov. 3–5, 1997.
68. Chen S. Y., Burnham B. S., Spielvogel B. F., Sood A., Wyrich S. D., Hall I. H.: Appl. Organomet. Chem. 1996, 10, 279. <https://doi.org/10.1002/(SICI)1099-0739(199604)10:3/4<279::AID-AOC470>3.0.CO;2-8>
69. Soloway A. H., Tjark W., Barnum B. A., Rong F.-G., Barth R. F., Codogni I. M., Wilson J. G.: Chem. Rev. 1998, 98, 1515. <https://doi.org/10.1021/cr941195u>
70. Davidson M. G., Hughes A. K., Marder T. B., Wade K. (Eds): Contemporary Boron Chemistry. Royal Society of Chemistry, Cambridge 2000.
71. Yang W., Gao X., Wang B.: Med. Res. Rev. 2003, 23, 346. <https://doi.org/10.1002/med.10043>
72. Sarhan A., Wulff G.: Makromol. Chem. 1982, 183, 85. <https://doi.org/10.1002/macp.1982.021830107>
73. Uzundogan E., Kayi H., Denkbaş E. B., Patir S., Tuncel A.: Polym. Int. 2003, 52, 649.
74. Dorn H., Singh R. A., Massey J. A., Lough A. J., Manners I.: Angew. Chem. Int. Ed. 1999, 38, 3321. <https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3321::AID-ANIE3321>3.0.CO;2-0>
75. Dorn H., Singh R. A., Massey J. A., Nelson J. M., Jaska C. A., Lough A. J., Manners I.: J. Am. Chem. Soc. 2000, 122, 6669. <https://doi.org/10.1021/ja000732r>
76. Dorn H., Rodezno J. M., Brunnhofer B., Rivard E., Lough A. J., Manners I.: Macromolecules 2003, 36, 291. <https://doi.org/10.1021/ma021447q>
77. Jacquemin D., Lambert C., Perpete E. A.: Macromolecules 2004, 37, 1009. <https://doi.org/10.1021/ma0354849>
78. Xu G., Chung T. C.: J. Am. Chem. Soc. 1999, 121, 6763. <https://doi.org/10.1021/ja9913232>
79. Chung T. C., Xu G., Lu Y., Hu Y.: Macromolecules 2001, 34, 8040. <https://doi.org/10.1021/ma011074d>
80. Chung T. C., Janvikul W., Lu H. L.: J. Am. Chem. Soc. 1996, 118, 705. <https://doi.org/10.1021/ja9527737>
81. Chung T. C., Lu H. L., Li C. L.: Macromolecules 1994, 27, 7533. <https://doi.org/10.1021/ma00104a005>
82. Chung T. C., Janvikul W., Bernard R., Jiang G. J.: Macromolecules 1994, 27, 26. <https://doi.org/10.1021/ma00079a004>
83. Chung T. C., Bernard R., Hu Y., Li C. L., Liu S. L., Jiang G. J.: Polymer 1995, 36, 3565. <https://doi.org/10.1016/0032-3861(95)92029-E>
84. Chung T. C., Lu H. L., Janvikul W.: Polymer 1997, 38, 1495. <https://doi.org/10.1016/S0032-3861(96)00854-3>
85. Boeseken J.: Adv. Carbohydr. Chem. 1949, 47, 189.
86. Aronoff S., Chen T., Cheveldayoff M.: Carbohydr. Res. 1975, 40, 299. <https://doi.org/10.1016/S0008-6215(00)82611-7>
87. Foster A. B.: Adv. Carbohydr. Chem. 1957, 12, 81.
88. Kataoka K., Miyazaki H., Bunya M., Okano T., Sakurai Y.: J. Am. Chem. Soc. 1998, 120, 12694. <https://doi.org/10.1021/ja982975d>
89. Weith H., Wiebers J., Gilham P.: Biochemistry 1970, 9, 4396. <https://doi.org/10.1021/bi00824a021>
90. Hageman J. H., Kuehn G. D.: Anal. Biochem. 1977, 80, 547. <https://doi.org/10.1016/0003-2697(77)90678-9>
91. Gelijkens C., Deleenheer A.: J. Chromatogr. 1980, 183, 78. <https://doi.org/10.1016/S0378-4347(00)81401-2>
92. Kitano S., Kataoka K., Koyama K., Okano T., Sakurai Y.: Makromol. Chem., Rapid Commun. 1991, 12, 227. <https://doi.org/10.1002/marc.1991.030120405>
93. Kitano S., Koyama K., Kataoka K., Okano T., Sakurai Y.: J. Controlled Release 1992, 19, 161. <https://doi.org/10.1016/0168-3659(92)90073-Z>
94. Miyazaki H., Kikuchi A., Koyama K., Okano T., Sakurai Y., Kataoka K.: Biochem. Biophys. Res. Commun. 1993, 195, 829. <https://doi.org/10.1006/bbrc.1993.2120>
95. Uchimura E., Otsuka H., Okano T., Sakurai Y., Kataoka K.: Biotechnol. Bioeng. 2001, 72, 307. <https://doi.org/10.1002/1097-0290(20010205)72:3<307::AID-BIT7>3.0.CO;2-E>
96. Matsumoto A., Yoshida R., Kataoka K.: Biomacromolecules 2004, 5, 1038. <https://doi.org/10.1021/bm0345413>
97. Nakayama D., Takeoka Y., Watanabe M., Kataoka K.: Angew. Chem. Int. Ed. 2003, 42, 4197. <https://doi.org/10.1002/anie.200351746>
98. Matsumoto A., Kurata T., Shiino D., Kataoka K.: Macromolecules 2004, 37, 1502. <https://doi.org/10.1021/ma035382i>
99. Matsumoto A., Ikeda S., Harada A., Kataoka K.: Biomacromolecules 2003, 4, 1410. <https://doi.org/10.1021/bm034139o>
100. Li Y. C., Larsson E. L., Jungvid H., Galaev I. Yu., Mattiasson B.: J. Chromatogr., A 2001, 909, 137. <https://doi.org/10.1016/S0021-9673(00)01106-7>
101. Weith H. L., Wiebers J. L., Gilham P. T.: Biochemistry 1970, 9, 4396. <https://doi.org/10.1021/bi00824a021>
102. Li Y. C., Larsson E. L., Jungvid H., Galaev I. Yu., Mattiasson B.: Bioseparation 2000, 9, 315. <https://doi.org/10.1023/A:1011187724356>
103. Miyata T., Uragami T., Nakamae K.: Adv. Drug Delivery Rev. 2002, 54, 79. <https://doi.org/10.1016/S0169-409X(01)00241-1>
104. Qiu Y., Park K.: Adv. Drug Delivery Rev. 2001, 53, 321. <https://doi.org/10.1016/S0169-409X(01)00203-4>
105. Soh N., Umeno D., Tang Z. L., Murata M., Maeda M.: Anal. Sci. 2002, 18, 1295. <https://doi.org/10.2116/analsci.18.1295>
106. Shiino D., Murata Y., Kuba A., Kataoka K., Kim Y. J., Koyama Y., Kikuchi A., Yokoyama M., Sakurai Y., Okano T.: J. Controlled Release 1995, 37, 269. <https://doi.org/10.1016/0168-3659(95)00084-4>
107. Shiomori K., Ivanov A. E., Galaev I. Yu., Kawano Y., Mattiasson B.: Macromol. Chem. Phys. 2004, 205, 27. <https://doi.org/10.1002/macp.200300019>
108. Soundarajan S., Badawi M., Kohlrust C. M., Hageman J. H.: Anal. Biochem. 1989, 178, 125. <https://doi.org/10.1016/0003-2697(89)90367-9>
109. Maestas R. R., Prieto J. R., Kuehn G. D., Hageman H.: J. Chromatogr. 1980, 189, 225. <https://doi.org/10.1016/S0021-9673(00)81522-8>
110. Boeseken J.: Adv. Carbohydr. Chem. 1949, 47, 189.
111. Aronoff S., Chen T., Cheveldayoff M.: Carbohydr. Res. 1975, 40, 299. <https://doi.org/10.1016/S0008-6215(00)82611-7>
112. Foster A. B.: Adv. Carbohydr. Chem. 1957, 12, 81.
113. Lorand J. P., Edwards J. D.: J. Org. Chem. 1959, 24, 769. <https://doi.org/10.1021/jo01088a011>
114. Rzaev Z. M. O.: N- and B-Containing Supramolecular Architectures: Design, Synthesis and Characterization. Waters International GPC-2003 and ISPAC-16 Symposium, June 7–12, 2003, Baltimore (MD). Book of Abstracts, p. 41.
115. Rzaev Z. M. O., Kahraman G., Beşkardeş O., Pişkin E.: Synthesis and Characterization of Polyfunctional Bioengineering Copolymers of p-Vinylphenylboronic Acid with Electron-Acceptor Monomers. Waters International GPC-2003 and ISPAC-16 Symposium, June 7–12, 2003, Baltimore (MD). Book of Abstracts, p. 40.
116. Kahraman G., Beşkardeş O., Rzaev Z. M. O., Pişkin E.: Design, Synthesis and Stimuli- Responsive Properties of Boron-Containing Bioengineering Functional Copolymers and Supramolecular Architectures. Presented at Biomedical Science & Technology Symposium, October 10–12, 2003, Northern Cyprus.
117. Çimen E. K., Rzaev Z. M. O., Pişkin E.: Stimuli-Responsive Properties Copolymers of N-Isopropylacrylamide and p-Vinylphenylboronic Acid as Water-Soluble Polymeric Carriers. Presented at Biomedical Science & Technology Symposium, October 10–12, 2003, Northern Cyprus.
118. Rzaev Z. M. O., Kirci B., Kalaycioglu E., Pişkin E.: Physically Crosslinkable Poly(maleimide-co-p-vinylphenylboronic acid). Presented at World Polymer Congress, 40th IUPAC International Symposium on Macromolecules, July 4–9, 2004, Paris, France.
119. Dogan D., Türk M., Rzayev Z. M. O., Pişkin E.: Boron-Containing N-Isopropylacrylamide Copolymers/Poly(ethyleneimine) Macrocomplexes and Their Bioengineering Properties. ICFA 2004 International Conference on Fuctional Acrylates, August 31–September 04, 2004, Bogaziçi University, Istanbul, Turkey. Book of Abstracts, p. 43.
120. Dogan D., Türk M., Rzayev Z. M. O., Pişkin E.: Stimuli-Responsive Boron-Containing Copolymers. BIOMED-2004, XI. International Biomedical Science &Technology Days, September 6–10, 2004, Hacettepe University, Ankara, Turkey. Book of Abstracts, p. 40.
121. Kahraman G., Beşkardeş O., Rzaev Z. M. O., Pişkin E.: Polymer 2004, 45, 5813. <https://doi.org/10.1016/j.polymer.2004.06.028>
122. Rzaev Z. M. O.: Boron-Containing Functional Copolymers for Bioengineering Application. European Polymer Congress, Moscow, June 27–July 1, 2005. Book of Abstracts, P1.2–47.
123. Çimen K. E., Rzaev Z. M. O., Pişkin E.: J. Appl. Polym. Sci. 2005, 95, 573. <https://doi.org/10.1002/app.21260>
124. Rzaev Z. M. O., Dinçer S., Pişkin E.: Prog. Polym. Sci. 2007, 32, 534. <https://doi.org/10.1016/j.progpolymsci.2007.01.006>
125. Kahraman G.: Ph.D. Thesis. Hacettepe University, Ankara 2004.
126. Erdogan D.: M.S. Thesis. Hacettepe University, Ankara 2005.
127. Rzaev Z. M. O.: Prog. Polym. Sci. 2000, 25, 163. <https://doi.org/10.1016/S0079-6700(99)00027-1>
128. Kelen T., Tüdös F.: J. Macromol. Sci. Chem. A 1975, 9, 1. <https://doi.org/10.1080/00222337508068644>
129. Dube M., Amin Sanayei R., Penlidis A., O’Driscoll K. F., Reilly P. M.: J. Polym. Sci., Part A-2: Polym. Chem. 1991, 29, 703. <https://doi.org/10.1002/pola.1991.080290512>
130. Alfrey T., Price C. C.: J. Polym. Sci. 1947, 2, 101. <https://doi.org/10.1002/pol.1947.120020112>
131. Dinçer S., Köseli V., Kesim H., Rzaev Z. M. O., Pişkin E.: Eur. Polym. J. 2002, 38, 2143. <https://doi.org/10.1016/S0014-3057(02)00127-1>
132. Braun D., Czerwinski D., Tüdos F., Kelen T.: Angew. Makromol. Chem. 1984, 125, 161. <https://doi.org/10.1002/apmc.1984.051250112>
133. Nichifor M., Zhu X. X.: Polymer 2003, 44, 3053. <https://doi.org/10.1016/S0032-3861(03)00184-8>
134. Kabanov V. A., Zubov V. P., Semchikov Y. D.: Complex-Radical Polymerization. Khimiya, Moscow 1987.
135. Gromov V. F., Galperina N. I., Osmanov T. O., Abkin A. D.: Eur. Polym. J. 1980, 16, 529. <https://doi.org/10.1016/0014-3057(80)90137-8>
136. de Schryver F. S., Smets G., Van Thielen Y.: J. Polym. Sci., Part B: Polym. Lett. 1968, 6, 547. <https://doi.org/10.1002/pol.1968.110060803>
137. Sperling L. H.: Introduction to Physical Polymer Science, 2nd ed. John Wiley & Sons, Inc., New York 1992.
138. Rabek J. F.: Experimental Methods in Polymer Chemistry, p. 507. Wiley & Sons, New York 1980.
139. Sugai S., Nitta K., Ohno N.: Polymer 1982, 23, 238. <https://doi.org/10.1016/0032-3861(82)90307-X>
140. Ohno N., Sugai S.: Macromolecules 1885, 18, 287.
141. Türk M., Dinçer S., Yulug I. G., Pişkin E.: J. Controlled Release 2004, 96, 325. <https://doi.org/10.1016/j.jconrel.2004.01.013>