Collect. Czech. Chem. Commun.
2007, 72, 527-540
https://doi.org/10.1135/cccc20070527
Synthesis and Characterization of Ni(II) and Pd(II) Complexes Bearing Achiral and Chiral Bidentate Aminophosphine Ligands
David Benito-Garagorria, Kurt Mereiterb and Karl Kirchnera,*
a Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
b Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
References
1a. G. R.: Chem. Rev. 1993, 93, 2067.
<https://doi.org/10.1021/cr00022a006>
1b. Z. Z., Cheng H.: Coord. Chem. Rev. 1996, 147, 1.
<https://doi.org/10.1016/0010-8545(94)01112-5>
1c. P., Soulantica K.: Coord. Chem. Rev. 1999, 193–195, 499.
<https://doi.org/10.1016/S0010-8545(99)00140-X>
2a. E., Schäfer M.: Z. Anorg. Allg. Chem. 1968, 359, 67.
<https://doi.org/10.1002/zaac.19683590109>
2b. W. J., Angelici R. J.: Inorg. Chim. Acta 1973, 7, 713.
<https://doi.org/10.1016/S0020-1693(00)94915-6>
2c. H. T., Hahn G.: Z. Anorg. Allg. Chem. 1989, 577, 74.
<https://doi.org/10.1002/zaac.19895770108>
3a. M., Lugan N., Mathieu R. : J. Chem. Soc., Dalton Trans. 1994, 2755.
<https://doi.org/10.1039/dt9940002755>
3b. H., Alvarez M., Lugan N., Mathieu R.: J. Chem. Soc., Chem. Commun. 1995, 1721.
<https://doi.org/10.1039/c39950001721>
4a. W. V., Dick T. R., Ford G. H., Kelly W. S. J., Nelson M. S.: J. Chem. Soc. A 1971, 3495.
<https://doi.org/10.1039/j19710003495>
4b. M. P., Bruce C. T., Mattson B. M., Pignolet L. H.: Inorg. Chem. 1983, 22, 3267.
<https://doi.org/10.1021/ic00164a020>
4c. R. J., Nilsson P. V., Pignolet L. H.: Inorg. Chem. 1985, 24, 1935.
<https://doi.org/10.1021/ic00206a048>
4d. M. P., Mattson B. M., Pignolet L. H.: Inorg. Chem. 1983, 22, 2644.
<https://doi.org/10.1021/ic00160a037>
5a. E., Maaser M.: Z. Anorg. Allg. Chem. 1966, 334, 20515.
5b. P., Bressan M.: Inorg. Chem. 1975, 14, 1491.
<https://doi.org/10.1021/ic50149a010>
5c. M. P., Casalnuovo A. L., Johnson B. J., Mattson B. M., Mueting A. M., Pignolet L. H.: Inorg. Chem. 1988, 27, 1649.
<https://doi.org/10.1021/ic00282a029>
5d. H. H., Casalnuovo A. L., Johnson B. J., Mueting A. M., Pignolet L. H.: Inorg. Chem. 1988, 27, 325.
<https://doi.org/10.1021/ic00275a020>
5e. L., Zotto A. D., Mezzetti A., Zangrando E., Rigo P.: J. Chem. Soc., Dalton Trans. 1993, 3001.
<https://doi.org/10.1039/dt9930003001>
5f. A. D., Nardin G., Rigo P.: J. Chem. Soc., Dalton Trans. 1995, 3343.
<https://doi.org/10.1039/dt9950003343>
5g. J. A., Espinet P., Soulantica K.: Inorg. Chem. 1997, 36, 5251.
<https://doi.org/10.1021/ic970745e>
5h. M. A., Casares J. A., Espinet P., Soulantica K., Charmant J. P. H., Orpen A. G.: Inorg. Chem. 2000, 39, 705.
<https://doi.org/10.1021/ic990634a>
5i. M. A., Casares J. A., Espinet P., Valles E., Soulantica K.: Tetrahedron 2001, 42, 5697.
<https://doi.org/10.1016/S0040-4039(01)01086-3>
6a. W., Scholer H.: Z. Chem. 1967, 11, 431.
6b. W., Flörke U., Haupt H. J.: Z. Anorg. Allg. Chem. 1987, 545, 83.
<https://doi.org/10.1002/zaac.19875450210>
6c. W., Flörke U., Haupt H. J.: Z. Anorg. Allg. Chem. 1989, 574, 239.
<https://doi.org/10.1002/zaac.655740127>
6d. H., Weber H.: Chem. Ber. 1985, 118, 3380.
<https://doi.org/10.1002/cber.19851180835>
6e. S. M., Slawin A. M. Z., Woolins J. D.: J. Chem. Soc., Dalton Trans. 2000, 2559.
<https://doi.org/10.1039/b003294h>
7a. D., Becker E., Wiedermann J., Lackner W., Pollak M., Mereiter K., Kisala J., Kirchner K.: Organometallics 2006, 25, 1900.
<https://doi.org/10.1021/om0600644>
7b. D., Bocokic V., Mereiter K., Kirchner K.: Organometallics 2006, 25, 3817.
<https://doi.org/10.1021/om060289e>
8a. F., Braunstein P., Saussine L.: Organometallics 2004, 23, 2625.
<https://doi.org/10.1021/om034198i>
8b. F., Braunstein P., Saussine L.: Organometallics 2004, 23, 2633.
<https://doi.org/10.1021/om034203i>
8c. F., Braunstein P., Saussine L.: Acc. Chem. Res. 2005, 38, 784.
<https://doi.org/10.1021/ar050040d>
9. T., Peters W., Wunderlich H., Kuchen W.: Angew. Chem., Int. Ed. Engl. 1993, 32, 907.
<https://doi.org/10.1002/anie.199309071>
10. S., Neese F., Bothe E., Bill E., Weyhermüller T., Wieghardt K.: Inorg. Chem. 2005, 44, 3636.
<https://doi.org/10.1021/ic040117e>
11. F., Braunstein P., Saussine L., Welter R.: Organometallics 2004, 23, 2613.
<https://doi.org/10.1021/om034197q>
12a. G., Waymouth R. M.: Chem. Rev. 1989, 89, 257.
<https://doi.org/10.1021/cr00091a007>
12b. J.: Pure Appl. Chem. 1989, 61, 1673.
<https://doi.org/10.1351/pac198961101673>
12c. B. M., van Vranken D. L.: Chem. Rev. 1996, 96, 395.
<https://doi.org/10.1021/cr9409804>
12d. J. M. J.: Adv. Asym. Synth. 1996, 299.
<https://doi.org/10.1007/978-94-007-0797-9_15>
12e. G., Pfalz A.: Acc. Chem. Res. 2000, 33, 336.
<https://doi.org/10.1021/ar9900865>
13. P., Naud F., Dedieu A., Rohmer M.-M., DeCian A., Rettig S. J.: Organometallics 2001, 20, 2966.
<https://doi.org/10.1021/om010165w>
14a. P., Zhang J., Welter R.: Dalton Trans. 2003, 507.
<https://doi.org/10.1039/b212393m>
14b. J., Braunstein P., Welter R.: Inorg. Chem. 2004, 43, 4172.
<https://doi.org/10.1021/ic035479l>
15a. V. N., Kabro A. A., Moieseev S. K., Kalinin V. N., Bondarev O. G., Davankov V. A., Gavrilov K. N.: Russ. Chem. Bull., Int. Ed. 2004, 53, 814.
<https://doi.org/10.1023/B:RUCB.0000037848.27038.f8>
15b. A., Kamer P. C. J., van Leeuwen P. W. N. M., Goubitz K., Fraanje J., Veldman N., Spek A.: Organometallics 1996, 15, 835.
<https://doi.org/10.1021/om950549k>
16. R., Heller D., Selke R.: Tetrahedron: Asymmetry 1998, 9, 329.
<https://doi.org/10.1016/S0957-4166(97)00622-8>
17. D., Doyle J. R.: Inorg. Synth. 1990, 28, 346.
<https://doi.org/10.1002/9780470132593.ch89>
18. L. G. L.: Inorg. Synth. 1972, 13, 154.
<https://doi.org/10.1002/9780470132449.ch30>
19. Bruker programs: SMART, version 5.625; SAINT, version 6.54; SADABS, version 2.10; SHELXTL, version 6.1. Bruker AXS Inc., Madison (WI) 2003.
20. Sheldrick G. M.: SHELX97, Program System for Crystal Structure Determination. University of Göttingen, Göttingen 1997.
21. Spek A. L.: PLATON, A Multipurpose Crystallographic Tool. University of Utrecht, Utrecht 2003.
22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford (CT) 2004.
23a. A. D.: J. Chem. Phys. 1993, 98, 5648.
<https://doi.org/10.1063/1.464913>
23b. B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 157, 200.
<https://doi.org/10.1016/0009-2614(89)87234-3>
23c. C., Yang W., Parr G.: Phys. Rev. B: Condens. Matter 1988, 37, 785.
<https://doi.org/10.1103/PhysRevB.37.785>
24a. U., Dolg M., Stoll H., Preuss H.: Mol. Phys. 1993, 78, 1211.
<https://doi.org/10.1080/00268979300100801>
24b. W., Dolg M., Stoll H., Preuss H.: J. Chem. Phys. 1994, 100, 7535.
<https://doi.org/10.1063/1.466847>
24c. T., Nicklass A., Stoll H., Dolg M., Schwerdtfeger P.: J. Chem. Phys. 1996, 105, 1052.
<https://doi.org/10.1063/1.471950>
25a. A. D., Chandler G. S.: J. Chem. Phys. 1980, 72, 5639.
<https://doi.org/10.1063/1.438980>
25b. R., Binkley J. S., Seeger R., Pople J. A.: J. Chem. Phys. 1980, 72, 650.
<https://doi.org/10.1063/1.438955>
25c. A. J. H.: Chem. Phys. 1970, 52, 1033.
25d. P. J.: J. Chem. Phys. 1977, 66, 4377.
<https://doi.org/10.1063/1.433731>
25e. K., Trucks G. W.: J. Chem. Phys. 1989, 91, 1062.
<https://doi.org/10.1063/1.457230>
25f. R. C., Curtiss L. A.: J. Comput. Chem. 1995, 103, 6104.
25g. M. P., Radom L.: J. Chem. Phys. 1991, 94, 511.
<https://doi.org/10.1063/1.460367>
26a. S., Scrocco E., Tomasi J.: Chem. Phys. 1981, 55, 117.
<https://doi.org/10.1016/0301-0104(81)85090-2>
26b. J. L., Silla E., Tomasi J., Bonaccorsi R.: J. Comput. Chem. 1987, 8, 778.
<https://doi.org/10.1002/jcc.540080605>
26c. F., Tomasi J.: J. Comput. Chem. 1989, 10, 616.
<https://doi.org/10.1002/jcc.540100504>
26d. J., Persico M.: Chem. Rev. 1994, 94, 2027.
<https://doi.org/10.1021/cr00031a013>

