Collect. Czech. Chem. Commun.
2007, 72, 996-1004
https://doi.org/10.1135/cccc20070996
Synthesis of Novel Coumarin-Based Fluorescent Probes
Ivana Kosiova* and Pavol Kois
Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, Pavilon CH2, SK-84215 Bratislava, Slovak Republic
References
1. W. T., Groger G., Rosch R., Zebrowska A., Markiewicz M., Klotz M., Hinz M., Godzina P., Seliger H.: Nucleic Acids Res. 1997, 25, 3672.
<https://doi.org/10.1093/nar/25.18.3672>
2. J. J.: Angew. Chem., Int. Ed. 1998, 37, 325.
<https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<325::AID-ANIE325>3.0.CO;2-L>
3. P., Langenhan J., Kool E.: Nucleic Acids Res. 1998, 26, 3789.
<https://doi.org/10.1093/nar/26.16.3789>
4. C., Stolze K., Engels J. W.: Synlett 1999, 1667.
<https://doi.org/10.1055/s-1999-2914>
5. Y., Kondo S., Sase I., Suga T., Mise K., Furusawa I., Kawakami S., Watanabe Y.: Nucleic Acids Res. 2000, 28, e107.
<https://doi.org/10.1093/nar/28.24.e107>
6. S., Kanagawa T., Yamada K., Torimura M., Yokomaku T., Kamagata Y., Kurane R.: Nucleic Acids Res. 2001, 29, e34.
<https://doi.org/10.1093/nar/29.6.e34>
7. C., Marras S. A., Slats J. C. M., Truffert J.-C., Lemaitre M., Raap A. K., Dirks R. W., Tanke H. J.: Nucleic Acids Res. 2001, 29, e89.
<https://doi.org/10.1093/nar/29.17.e89>
8. A.: Nucleic Acids Res. 2002, 30, e97.
<https://doi.org/10.1093/nar/gnf096>
9. W., Akeson M.: Curr. Opin. Chem. Biol. 2002, 6, 816.
<https://doi.org/10.1016/S1367-5931(02)00395-2>
10. M.: Curr. Opin. Biotechnol. 2006, 17, 28.
<https://doi.org/10.1016/j.copbio.2005.12.008>
11. K., Durrant I., Evans M., Gait M.: Nucleic Acids Res. 1990, 18, 4345.
<https://doi.org/10.1093/nar/18.15.4345>
12. P., McCollum C., Upadhya K., Jacobson K., Vu H. N., Andrus A.: Tetrahedron Lett. 1992, 33, 5033.
<https://doi.org/10.1016/S0040-4039(00)61181-4>
13. M. W., Lukhtanov E. A., Gorn V. V., Lucas D. D., Zhou J. H., Pai S. B., Cheng Y., Meyer R. B., Jr.: J. Med. Chem. 1995, 38, 4587.
<https://doi.org/10.1021/jm00022a025>
14. I. A., Korshun V. A., Petrov A. A., Gontarev S. V., Berlin Y. A.: Bioorg. Med. Chem. Lett. 1995, 5, 2081.
<https://doi.org/10.1016/0960-894X(95)00373-2>
15a. P.: Bioorg. Med. Chem. Lett. 1996, 6, 147.
<https://doi.org/10.1016/0960-894X(95)00579-I>
15b. K., Iwane K., Shimidzu T., Tanaka K.: Tetrahedron Lett. 1996, 37, 4983.
<https://doi.org/10.1016/0040-4039(96)00989-6>
16. K., Takei M., Nakano H.: Tetrahedron Lett. 1997, 38, 6051.
<https://doi.org/10.1016/S0040-4039(97)01358-0>
17. S.-H., Iyer R. S., Aggarwal S. K., Kalra K. L.: Bioorg. Med. Chem. Lett. 1997, 7, 1639.
<https://doi.org/10.1016/S0960-894X(97)00278-3>
18. V. A., Prokhorenko I. A., Gontarev S. V., Skorobogatyi M. V., Balakin K. V., Manasova E. V., Malakhov A. D., Berlin Y. A.: Nucleosides Nucleotides 1997, 16, 1461.
<https://doi.org/10.1080/07328319708006206>
19. V. A., Balakin K. V., Proskurina T. S., Mikhalev II, Malakhov A. D., Berlin Y. A.: Nucleosides Nucleotides 1999, 18, 2661.
<https://doi.org/10.1080/07328319908044632>
20. W. C., Bashkin J. K.: Chem. Commun. 2000, 767.
<https://doi.org/10.1039/a908783d>
21. M., Chan C. M., Fino J. R., Mattingly P. G.: J. Org. Chem. 2000, 65, 596.
<https://doi.org/10.1021/jo991449h>
22. N. N., Malakhov A. D., Stetsenko D. A., Korshun V. A., Gait M. J.: Org. Lett. 2002, 4, 4607.
<https://doi.org/10.1021/ol0269289>
23. The Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 10th Web ed.; www.probes.invitrogen.com/handbook.
24. E. B., Madaras M. L., Coleman R. S., Murphy C. J., Berg M. A.: J. Am. Chem. Soc. 1999, 121, 11644.
<https://doi.org/10.1021/ja992456q>
25. D., Sen S., Pérez Lustres J. L., Kovalenko S. A., Ernsting N. P., Murphy C. J., Coleman R. S., Berg M. A.: J. Am. Chem. Soc. 2006, 128, 6885.
<https://doi.org/10.1021/ja0582105>
26. T., Nakano H., Yamana K.: Tetrahedron Lett. 2000, 41, 2605.
<https://doi.org/10.1016/S0040-4039(00)00215-X>
27. P., Loseto A., Santaniello E.: Tetrahedron 2002, 58, 5767.
<https://doi.org/10.1016/S0040-4020(02)00575-6>
28. B., Ballmer P., Borroni E., Zurcher G., Winkler F. K., Jakob-Roetne R., Diederich F.: Chem. Eur. J. 2000, 6, 971.
<https://doi.org/10.1002/(SICI)1521-3765(20000317)6:6<971::AID-CHEM971>3.0.CO;2-0>
29. F. T., Ko S. L., Liu L. J., Chen H.: Heterocycles 2000, 53, 2055.
<https://doi.org/10.3987/COM-00-8964>
30. C. W., Christensen C., Meldal M.: J. Org. Chem. 2002, 67, 3057.
<https://doi.org/10.1021/jo011148j>
31. V. V., Green L. G., Fokin V. V., Sharpless K. B.: Angew. Chem., Int. Ed. 2002, 41, 2596.
<https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4>
32. V. O., Fokin V. V., Finn M. G.: Angew. Chem., Int. Ed. 2005, 44, 2210.
<https://doi.org/10.1002/anie.200461496>
33. F., Ortega-Munoz M., Morales-Sanfrutos J., Hernandez-Mateo F., Calvo-Flores F. G., Calvo-Asin J. A., Isac-Garcia J., Santoyo-Gonzalez F.: Org. Lett. 2003, 5, 1951.
<https://doi.org/10.1021/ol034534r>
34. T. R., Hilgraf R., Sharpless K. B., Fokin V. V.: Org. Lett. 2004, 6, 2853.
<https://doi.org/10.1021/ol0493094>
35. J. C., Fokin V. V., Finn M. G.: Tetrahedron Lett. 2005, 46, 4543.
<https://doi.org/10.1016/j.tetlet.2005.05.019>
36. H. C., Finn M. G., Sharpless K. B.: Angew. Chem., Int. Ed. 2001, 40, 2004.
<https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5>
37. H. C., Sharpless K. B.: Drug Discovery Today 2003, 8, 1128.
<https://doi.org/10.1016/S1359-6446(03)02933-7>
38. D. B., Barbas III, C. F.: Chem. Eur. J. 2004, 10, 5323.
<https://doi.org/10.1002/chem.200400597>
39. R., Krasinski A., Radic Z., Raushel J., Taylor P., Sharpless K. B., Kolb H. C.: J. Am. Chem. Soc. 2004, 126, 12809.
<https://doi.org/10.1021/ja046382g>
40. Armarego W. L. F., Chai C.: Purification of Laboratory Chemicals, 5th ed. Butterwort- Heinemann, an imprint of Elsevier Science, Amsterdam 2003.
41. C., Kokotos G., Tzougraki C.: J. Heterocycl. Chem. 2001, 38, 153.
<https://doi.org/10.1002/jhet.5570380122>

