Collect. Czech. Chem. Commun.
2007, 72, 1005-1013
https://doi.org/10.1135/cccc20071005
Exploring the Substrate Scope of the Ru(II)-Catalyzed Kharasch Reaction
Eskender Mume, Ian J. Munslow, Klas Källström and Pher G. Andersson*
Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, S-751 23 Uppsala, Sweden
References
1a. M. S., Jensen E. V., Urry W. H.: Science 1945, 102, 128.
<https://doi.org/10.1126/science.102.2640.128>
1b. M. S., Jensen E. V., Urry W. H.: J. Am. Chem. Soc. 1945, 67, 1626.
<https://doi.org/10.1021/ja01225a517>
1c. M. S., Jensen E. V., Urry W. H.: J. Am. Chem. Soc. 1946, 68, 154.
<https://doi.org/10.1021/ja01205a521>
1d. M. S., Jensen E. V., Urry W. H.: J. Am. Chem. Soc. 1947, 69, 1100.
<https://doi.org/10.1021/ja01197a035>
1e. M. S., Reinmuth O., Urry W. H.: J. Am. Chem. Soc. 1947, 69, 1105.
<https://doi.org/10.1021/ja01197a036>
2a. J., Bhatia B., Nayyar N. K.: Chem. Rev. 1994, 94, 519.
<https://doi.org/10.1021/cr00026a008>
2b. M., Kamigata N.: Bull. Chem. Soc. Jpn. 1987, 60, 3687.
<https://doi.org/10.1246/bcsj.60.3687>
3. R. A., van de Kuil L. A., van Koten G.: Acc. Chem. Res. 1998, 31, 423.
<https://doi.org/10.1021/ar970221i>
4. R. A.: Pure Appl. Chem. 2000, 72, 1233.
<https://doi.org/10.1351/pac200072071233>
5. H., Nakano T., Nagai Y.: Tetrahedron Lett. 1973, 14, 5147.
<https://doi.org/10.1016/S0040-4039(01)87410-4>
6a. H., Wakamatsu H., Ozaki N., Ishii T., Watanabe M., Tajima T., Itoh K.: J. Org. Chem. 1992, 57, 1682.
<https://doi.org/10.1021/jo00032a016>
6b. G. M., Weinreb S. M.: J. Org. Chem. 1990, 55, 1281.
<https://doi.org/10.1021/jo00291a034>
6c. H., Ozaki N., Seki K., Ishii M., Itoh K.: J. Org. Chem. 1989, 54, 4497.
<https://doi.org/10.1021/jo00280a011>
6d. T. K., Villani R., Weinreb S. M.: J. Am. Chem. Soc. 1988, 110, 5533.
<https://doi.org/10.1021/ja00224a043>
6e. T. K., Freyer A. J., Parvez M., Weinreb S. M.: J. Org. Chem. 1986, 51, 5501.
<https://doi.org/10.1021/jo00376a109>
6f. H., Ara K.-I., Wakamatsu H., Itoh K. J.: Chem. Commun. 1985, 518.
<https://doi.org/10.1039/c39850000518>
6g. M., Hájek M.: J. Mol. Catal. 1992, 77, 51.
<https://doi.org/10.1016/0304-5102(92)80184-I>
7. F. S., Demonceau A., Noels A. F.: Tetrahedron Lett. 2000, 41, 6071.
8a. A., Delfosse S., Cremasco C., Delaude L., Demonceau A., Noels A. F.: Tetrahedron Lett. 2003, 44, 6011.
<https://doi.org/10.1016/S0040-4039(03)01477-1>
8b. B., Verpoort F.: Tetrahedron Lett. 2002, 43, 4687.
<https://doi.org/10.1016/S0040-4039(02)00834-1>
8c. B., Verpoort F.: Tetrahedron Lett. 2001, 42, 8959.
<https://doi.org/10.1016/S0040-4039(01)01952-9>
8d. F., Sebille S., Demonceau A., Noels A. F., Núñes R., Abad M., Teixidor F., Viñas C.: Tetrahedron Lett. 2000, 41, 5347.
<https://doi.org/10.1016/S0040-4039(00)00840-6>
8e. F., Demonceau A., Delfosse S., Noels A. F.: Tetrahedron Lett. 1999, 40, 5689.
<https://doi.org/10.1016/S0040-4039(99)01090-4>
8f. J. A., Malnick L. M., Snapper M. L.: J. Org. Chem. 1999, 64, 344.
<https://doi.org/10.1021/jo982349z>
9. F., Wlodarczak L., Demonceau A., Noels A. F.: Eur. J. Inorg. Chem. 2001, 2689.
<https://doi.org/10.1002/1099-0690(200107)2001:14<2689::AID-EJOC2689>3.0.CO;2-R>
10a. O., Viñas C., Núñes R., Texidor F., Demonceau A., Delfosse S., Noels A. F., Mata I., Molins E.: J. Am. Chem. Soc. 2003, 125, 11830.
<https://doi.org/10.1021/ja036342x>
10b. L., Scopelliti R., Severin K.: Angew. Chem., Int. Ed. 2004, 43, 1520.
<https://doi.org/10.1002/anie.200353084>
10c. Y., Hanada S., Niibayashi S., Shimamoto K., Takaoka N., Nagashima H.: Tetrahedron 2005, 61, 10216.
<https://doi.org/10.1016/j.tet.2005.08.037>
10d. Y., Hanada S., Shimamoto K., Nagashima H.: Tetrahedron 2006, 62, 2779.
<https://doi.org/10.1016/j.tet.2006.01.011>
11. W. J., Davis R., Durrant J. L. A.: J. Organomet. Chem. 1985, 280, 397.
<https://doi.org/10.1016/0022-328X(85)88116-X>
12. Komiya S., Hurano M. in: Synthesis of Organometallic Compounds (S. Komiya, Ed.), pp. 159–218. John Wiley and Sons, New York 1997.
13. Y., Tsuji J.: Tetrahedron 1972, 28, 29.
<https://doi.org/10.1016/0040-4020(72)80051-6>
14a. H., Nakano T., Ohkawa K., Nagai Y.: Chem. Lett. 1978, 363.
<https://doi.org/10.1246/cl.1978.363>
14b. H., Ohkawa K., Ikemori S., Nakano T., Nagai Y.: Chem. Lett. 1979, 1011.
<https://doi.org/10.1246/cl.1979.1011>
15. B. T., Schrader T. O., Martín-Matute B., Kauffman C. R., Zhang P., Snapper M. L.: Tetrahedron 2004, 60, 7391.
<https://doi.org/10.1016/j.tet.2004.06.066>
16. Y., Rempel G. L.: Synthesis 1975, 448.
<https://doi.org/10.1055/s-1975-23798>
17. T., Yoshida Y., Hanawa T., Sugimori A.: Bull. Chem. Soc. Jpn. 1983, 56, 1795.
<https://doi.org/10.1246/bcsj.56.1795>
18. S., Bejot R., Billaud C., Li D. R., Falck J. R., Mioskowski C.: Tetrahedron Lett. 2006, 47, 5177.
<https://doi.org/10.1016/j.tetlet.2006.05.045>
19. O., Cais M.: J. Organomet. Chem. 1977, 125, 141.
<https://doi.org/10.1016/S0022-328X(00)93710-0>
20. R., Devlin J., Ramasubbu A., Scott R. M., Stevenson P.: J. Chem. Soc., Perkin. Trans. 1 1987, 1515.
<https://doi.org/10.1039/p19870001515>
21. F. K., Vinogradova L. V.: Izv. Akad. Nauk SSSR, Ser. Khim. 1976, 5, 1192.
22. H., Seki K., Ozaki N., Wakamatsu H., Itoh K., Tomo Y., Tsuji J.: J. Org. Chem. 1990, 55, 985.
<https://doi.org/10.1021/jo00290a032>
23. M., Uchimaru F.: Chem. Pharm. Bull. 1981, 29, 3134.
<https://doi.org/10.1248/cpb.29.3134>

