Collect. Czech. Chem. Commun.
2008, 73, 1327-1339
https://doi.org/10.1135/cccc20081327
Analytic Energies and Wave Functions of Two-Dimensional Schrödinger Equation: Two-Dimensional Fourth-Order Polynomial Potential
Vladimír Tichýa and Lubomír Skálab,a,*
a Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
b Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
References
1. Collect. Czech. Chem. Commun. 1998, 63, 1161.
< J., Skála L.: https://doi.org/10.1135/cccc19981161>
2. Phys. Rev. A 1996, 53, 2009.
< L., Čížek J., Dvořák J., Špirko V.: https://doi.org/10.1103/PhysRevA.53.2009>
3. Int. J. Theor. Phys. 1997, 36, 2953.
< L., Dvořák J., Kapsa V.: https://doi.org/10.1007/BF02435720>
4. Phys. Rev. A 2001, 65, 032120.
< G., Capdequi Peyranère M.: https://doi.org/10.1103/PhysRevA.65.032120>
5. J. Phys. A: Math. Theor. 2007, 40, 10291.
< D., Mansfeld P.: https://doi.org/10.1088/1751-8113/40/33/020>
6. Usp. Fiz. Nauk 1984, 144, 35.
< A. V.: https://doi.org/10.3367/UFNr.0144.198409b.0035>
7. Lett. Math. Phys. 2005, 74, 169.
< A. V.: https://doi.org/10.1007/s11005-005-0012-z>
8. Phys. Rev. A 2000, 62, 052107.
< L. C., Liu Y., Oh C. H., Wang X.-B.: https://doi.org/10.1103/PhysRevA.62.052107>
9. J. Phys. A: Math. Theor. 2007, 40, 10171.
< F., Singh R. M., Kumar N., Mishra S. C.: https://doi.org/10.1088/1751-8113/40/33/015>
10. J. Phys. A: Math. Gen. 2003, 36, 7828.
M.:
11. J. Phys. A: Math. Gen. 2004, 37, 10363.
< M. V.: https://doi.org/10.1088/0305-4470/37/43/023>
12. Phys. Rev. D 1973, 8, 3346.
C. M., Banks T. I., Wu T. T.:
13. Phys. Rev. D 1973, 8, 3366.
C. M., Banks T. I.:
14. Phys. Rep. 1978, 43, 305.
< F. T., MacMillen D., Montroll W. W.: https://doi.org/10.1016/0370-1573(78)90097-2>