Collect. Czech. Chem. Commun.
2008, 73, 1327-1339
https://doi.org/10.1135/cccc20081327
Analytic Energies and Wave Functions of Two-Dimensional Schrödinger Equation: Two-Dimensional Fourth-Order Polynomial Potential
Vladimír Tichýa and Lubomír Skálab,a,*
a Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
b Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
References
1. J., Skála L.: Collect. Czech. Chem. Commun. 1998, 63, 1161.
<https://doi.org/10.1135/cccc19981161>
2. L., Čížek J., Dvořák J., Špirko V.: Phys. Rev. A 1996, 53, 2009.
<https://doi.org/10.1103/PhysRevA.53.2009>
3. L., Dvořák J., Kapsa V.: Int. J. Theor. Phys. 1997, 36, 2953.
<https://doi.org/10.1007/BF02435720>
4. G., Capdequi Peyranère M.: Phys. Rev. A 2001, 65, 032120.
<https://doi.org/10.1103/PhysRevA.65.032120>
5. D., Mansfeld P.: J. Phys. A: Math. Theor. 2007, 40, 10291.
<https://doi.org/10.1088/1751-8113/40/33/020>
6. A. V.: Usp. Fiz. Nauk 1984, 144, 35.
<https://doi.org/10.3367/UFNr.0144.198409b.0035>
7. A. V.: Lett. Math. Phys. 2005, 74, 169.
<https://doi.org/10.1007/s11005-005-0012-z>
8. L. C., Liu Y., Oh C. H., Wang X.-B.: Phys. Rev. A 2000, 62, 052107.
<https://doi.org/10.1103/PhysRevA.62.052107>
9. F., Singh R. M., Kumar N., Mishra S. C.: J. Phys. A: Math. Theor. 2007, 40, 10171.
<https://doi.org/10.1088/1751-8113/40/33/015>
10. M.: J. Phys. A: Math. Gen. 2003, 36, 7828.
11. M. V.: J. Phys. A: Math. Gen. 2004, 37, 10363.
<https://doi.org/10.1088/0305-4470/37/43/023>
12. C. M., Banks T. I., Wu T. T.: Phys. Rev. D 1973, 8, 3346.
13. C. M., Banks T. I.: Phys. Rev. D 1973, 8, 3366.
14. F. T., MacMillen D., Montroll W. W.: Phys. Rep. 1978, 43, 305.
<https://doi.org/10.1016/0370-1573(78)90097-2>

