Collect. Czech. Chem. Commun. 2008, 73, 1357-1371
https://doi.org/10.1135/cccc20081357

Theoretical Study of the vdW Complex Cd···N2

Michal Ilčina,*, Vladimír Lukeša, Viliam Laurinca and Stanislav Biskupičb

a Department of Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
b Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic

References

1. Breckenridge W. H., Kim Malmin O., Nikolai W. L., Oba D.: Chem. Phys. Lett. 1978, 59, 38. <https://doi.org/10.1016/0009-2614(78)85609-7>
2. Bielski A., Ciurylo J., Domyslawska J., Lisak D., Traviński R. S., Szudy J.: Phys. Rev. A 2000, 62, 032511. <https://doi.org/10.1103/PhysRevA.62.032511>
3. Traviński R. S., Bielski A., Lisak D.: Acta Phys. Pol. A 2001, 99, 243. <https://doi.org/10.12693/APhysPolA.99.243>
4. Bielski A., Lisak D., Traviński R. S.: Eur. Phys. J. D 2001, 14, 27. <https://doi.org/10.1007/s100530170230>
5. Bielski A., Ciurylo J., Domyslawska J., Lisak D., Traviński R. S., Wolnikowski J.: Acta Phys. Pol. A 2000, 97, 1003. <https://doi.org/10.12693/APhysPolA.97.1003>
6. Bielski A., Lisak D., Traviński R. S., Szudy J.: Eur. Phys. J. D 2003, 23, 217.
7. Dham A. K., McCourt F. R. W., Dickinson A. S.: J. Chem. Phys. 2007, 127, 054302. <https://doi.org/10.1063/1.2753483>
8. Stoecklin T., Voronin A., Dham A. K., Stoker J. S. F., McCourt F. R. W.: Mol. Phys. 2008, 106, 75. <https://doi.org/10.1080/00268970701832363>
9. Munteanu C. R., Cacheiro J. L., Fernandez B.: J. Chem. Phys. 2004, 120, 9104. <https://doi.org/10.1063/1.1695330>
10. Patel K., Butler P. R., Ellis A. M., Wheeler M. D.: J. Chem. Phys. 2003, 119, 909. <https://doi.org/10.1063/1.1579464>
11. Beneventi L., Casavecchia P., Volpi G. G., Wong C. C. K., McCourt F. R. W.: J. Chem. Phys. 1993, 98, 7926. <https://doi.org/10.1063/1.464547>
12. Czuchaj E.: Chem. Phys. 1999, 248, 1. <https://doi.org/10.1016/S0301-0104(99)00247-5>
13. Fernandez B., Koch H., Makarewicz J.: J. Chem. Phys. 1999, 110, 8525. <https://doi.org/10.1063/1.478760>
14. Munteanu C. R., Cacheiro J. L., Fernandez B.: J. Chem. Phys. 2004, 121, 10419. <https://doi.org/10.1063/1.1809606>
15. Zhu J., Lu Y. P., Chen X. R., Cheng Y.: Eur. Phys. J. D 2005, 33, 43. <https://doi.org/10.1140/epjd/e2005-00034-8>
16. Dham A. K., Meath W. J., Jechow J. W., McCourt F. R. W.: J. Chem. Phys. 2006, 124, 034308. <https://doi.org/10.1063/1.2159001>
17. Boatz J. A., Gutowski M., Simons J.: J. Chem. Phys. 1992, 96, 6555. <https://doi.org/10.1063/1.462594>
18. Ramirezsolis A., Castillo S.: J. Chem. Phys. 1994, 100, 8251. <https://doi.org/10.1063/1.466768>
19. Chałasiński G., Szcęześniak M. M.: Chem. Rev. 1994, 94, 1723. <https://doi.org/10.1021/cr00031a001>
20. Jeziorski B., Moszyński R., Ratkiewicz A., Rybak S., Szalewicz K., Williams H. L.: SAPT: A Program for Many-Body Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies. Clementi V. (Ed.) in: METECC-94 (Methods and Techniques in Computational Chemistry), Vol B. STEF, Cagliari 1993.
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Gonzalez C., Pople J. A.: Gaussian 03, C.02. Gaussian, Inc., Pittsburgh (PA) 2003.
22. Boys S. F., Bernardi F.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
23. Küchle W., Dolg M., Stoll H., Preuss H.: Mol. Phys. 1991, 74, 1245. <https://doi.org/10.1080/00268979100102941>
24. Kendall R. A., Dunning Jr. T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6769. <https://doi.org/10.1063/1.462569>
25. Tao F.-M., Pan Y.-K.: J. Chem. Phys. 1992, 97, 4989. <https://doi.org/10.1063/1.463852>
26. Peterson K. A., Puzzarini C.: Theor. Chem. Acc. 2005, 114, 283. <https://doi.org/10.1007/s00214-005-0681-9>
27. Maitland G. C., Rigby M., Smith E. B., Wakeham W. A.: Intermolecular Forces. Clarrendon Press, Oxford 1981.
28. Hirschfelder J. O., Curtiss C. F., Bird R. B.: Molecular Theory of Gases and Liquids, Chap. 6. John Wiley & Sons, New York 1954.
29. Barker J. A., Fock W., Smith F.: Phys. Fluids 1964, 7, 897. <https://doi.org/10.1063/1.1711301>
30a. Ren P., Ponder J. W.: J. Phys. Chem. B 2003, 107, 5933. <https://doi.org/10.1021/jp027815+>
30b. Ren P., Ponder J. W.: J. Comput. Chem. 2002, 23, 1497. <https://doi.org/10.1002/jcc.10127>
30c. Pappu R. V., Hart R. K., Ponder J. W.: J. Phys. Chem. B 1998, 102, 9725. <https://doi.org/10.1021/jp982255t>
30d. Hodsdon M. E., Ponder J. W., Cistola D. P.: J. Mol. Biol. 1996, 264, 585. <https://doi.org/10.1006/jmbi.1996.0663>
30e. Kundrot C. E., Ponder J. W., Richards F. M.: J. Comput. Chem. 1991, 12, 402. <https://doi.org/10.1002/jcc.540120314>
30f. Ponder J. W., Richards F. M.: J. Comput. Chem. 1987, 8, 1016. <https://doi.org/10.1002/jcc.540080710>
31. Beeman D.: J. Comput. Phys. 1976, 20, 130. <https://doi.org/10.1016/0021-9991(76)90059-0>
32. Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R.: J. Chem. Phys. 1984, 81, 3684. <https://doi.org/10.1063/1.448118>
33. Ilčin M., Lukeš V., Bučinský L., Laurinc V., Biskupič S.: Int. J. Quantum Chem. 2008, 108, doi: 10.1002/qua.21744.
34. Spier J. L.: Physica 1940, 7, 381. <https://doi.org/10.1016/S0031-8914(40)90086-6>
35. Gardner P. J., Pang P., Preston S. R.: J. Chem. Eng. Data 1991, 36, 265. <https://doi.org/10.1021/je00003a003>
36. Massman W. J.: Atmos. Environ. 1999, 33, 453. <https://doi.org/10.1016/S1352-2310(98)00204-0>
37. Arefev K. M., Remarchuk B. F., Guseva M. A.: J. Eng. Phys. Thermophys. 1982, 42, 621. <https://doi.org/10.1007/BF00835092>