Collect. Czech. Chem. Commun.
     2008, 73, 1372-1390
  https://doi.org/10.1135/cccc20081372
  
Quasi-Exactly Solvable Models in Quantum Chemistry
Jacek Karwowski* and Kamil Szewc
Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland
References
1.  N. R., Sinanoglu O.: Phys. Rev. 1962, 128, 2687.
<https://doi.org/10.1103/PhysRev.128.2687>
2.  E.: An. R. Soc. Esp. Fis. Quim. 1968, 64, 177.
3.  M.: Phys. Rev. A 1993, 48, 3561.
<https://doi.org/10.1103/PhysRevA.48.3561>
4.  J., Cyrnek L.: Comput. Methods Sci. Technol. 2003, 9, 67.
<https://doi.org/10.12921/cmst.2003.09.01.67-78>
5.  J., Cyrnek L.: Ann. Phys. (Leipzig) 2004, 13, 181.
<https://doi.org/10.1002/andp.200310071>
6.  A., Ghosh S. K.: Phys. Rev. A 1990, 42, 1178.
<https://doi.org/10.1103/PhysRevA.42.1178>
7.  S. K., Samanta A.: J. Chem. Phys. 1991, 94, 517.
<https://doi.org/10.1063/1.460368>
8.  S. K., Gupta N.: Nuovo Cimento Soc. Ital. Fis., B 1998, 113, 299.
9.  J., Cyrnek L.: Collect. Czech. Chem. Commun. 2005, 70, 864.
<https://doi.org/10.1135/cccc20050864>
10.  R., Mujica V.: J. Phys. B: At. Mol. Opt. Phys. 1998, 31, 4537.
<https://doi.org/10.1088/0953-4075/31/20/012>
11.  E. V., Lopez X., Ugalde J. M.: J. Chem. Phys. 2005, 123, 024102.
<https://doi.org/10.1063/1.1940611>
12.  X., Ugalde J. M., Echevarría L., Ludeña E. V.: Phys. Rev. A 2006, 74, 042504.
<https://doi.org/10.1103/PhysRevA.74.042504>
13.  J.: Int. J. Quantum Chem. 2008, 108, 2253.
<https://doi.org/10.1002/qua.21751>
14. Among unexpected consequences of specific symmetry properties of this model one can mention the independence of the dipole transition probabilities due to an operator D ~ r1 + r2 + r3 of the specific form of V (see ref.5).
15. Piela L.: Ideas of Quantum Chemistry, Chap. 6. Elsevier, Amsteradam 2007.
16.  U.: J. Chem. Phys. 2006, 124, 014105.
<https://doi.org/10.1063/1.2141509>
17a.  F.: J. Math. Phys. 1969, 10, 2191.
<https://doi.org/10.1063/1.1664820>
17b.  F.: J. Math. Phys. 1969, 10, 2197.
<https://doi.org/10.1063/1.1664821>
17c.  F.: J. Math. Phys. 1971, 12, 419.
<https://doi.org/10.1063/1.1665604>
18. Moshinsky M.: The Harmonic Oscillator in Modern Physics: From Atoms to Quarks. Gordon and Breach, New York 1969.
19. This class of solution does not cover an important case of ω = 0, δ = –1 (the H-like atom) – in this case the discrete spectrum eigenfunctions for r → __MATH__ behave as exp(–mζr/n).
20.  T.: Commun. Pure Appl. Math. 1957, 10, 151.
<https://doi.org/10.1002/cpa.3160100201>


