Collect. Czech. Chem. Commun. 2008, 73, 1372-1390
https://doi.org/10.1135/cccc20081372

Quasi-Exactly Solvable Models in Quantum Chemistry

Jacek Karwowski* and Kamil Szewc

Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland

References

1. Kestner N. R., Sinanoglu O.: Phys. Rev. 1962, 128, 2687. <https://doi.org/10.1103/PhysRev.128.2687>
2. Santos E.: An. R. Soc. Esp. Fis. Quim. 1968, 64, 177.
3. Taut M.: Phys. Rev. A 1993, 48, 3561. <https://doi.org/10.1103/PhysRevA.48.3561>
4. Karwowski J., Cyrnek L.: Comput. Methods Sci. Technol. 2003, 9, 67. <https://doi.org/10.12921/cmst.2003.09.01.67-78>
5. Karwowski J., Cyrnek L.: Ann. Phys. (Leipzig) 2004, 13, 181. <https://doi.org/10.1002/andp.200310071>
6. Samanta A., Ghosh S. K.: Phys. Rev. A 1990, 42, 1178. <https://doi.org/10.1103/PhysRevA.42.1178>
7. Ghosh S. K., Samanta A.: J. Chem. Phys. 1991, 94, 517. <https://doi.org/10.1063/1.460368>
8. Bose S. K., Gupta N.: Nuovo Cimento Soc. Ital. Fis., B 1998, 113, 299.
9. Karwowski J., Cyrnek L.: Collect. Czech. Chem. Commun. 2005, 70, 864. <https://doi.org/10.1135/cccc20050864>
10. Pino R., Mujica V.: J. Phys. B: At. Mol. Opt. Phys. 1998, 31, 4537. <https://doi.org/10.1088/0953-4075/31/20/012>
11. Ludeña E. V., Lopez X., Ugalde J. M.: J. Chem. Phys. 2005, 123, 024102. <https://doi.org/10.1063/1.1940611>
12. Lopez X., Ugalde J. M., Echevarría L., Ludeña E. V.: Phys. Rev. A 2006, 74, 042504. <https://doi.org/10.1103/PhysRevA.74.042504>
13. Karwowski J.: Int. J. Quantum Chem. 2008, 108, 2253. <https://doi.org/10.1002/qua.21751>
14. Among unexpected consequences of specific symmetry properties of this model one can mention the independence of the dipole transition probabilities due to an operator D ~ r1 + r2 + r3 of the specific form of V (see ref.5).
15. Piela L.: Ideas of Quantum Chemistry, Chap. 6. Elsevier, Amsteradam 2007.
16. Müller-Herold U.: J. Chem. Phys. 2006, 124, 014105. <https://doi.org/10.1063/1.2141509>
17a. Calogero F.: J. Math. Phys. 1969, 10, 2191. <https://doi.org/10.1063/1.1664820>
17b. Calogero F.: J. Math. Phys. 1969, 10, 2197. <https://doi.org/10.1063/1.1664821>
17c. Calogero F.: J. Math. Phys. 1971, 12, 419. <https://doi.org/10.1063/1.1665604>
18. Moshinsky M.: The Harmonic Oscillator in Modern Physics: From Atoms to Quarks. Gordon and Breach, New York 1969.
19. This class of solution does not cover an important case of ω = 0, δ = –1 (the H-like atom) – in this case the discrete spectrum eigenfunctions for r → __MATH__ behave as exp(–mζr/n).
20. Kato T.: Commun. Pure Appl. Math. 1957, 10, 151. <https://doi.org/10.1002/cpa.3160100201>