Collect. Czech. Chem. Commun.
2008, 73, 1372-1390
https://doi.org/10.1135/cccc20081372
Quasi-Exactly Solvable Models in Quantum Chemistry
Jacek Karwowski* and Kamil Szewc
Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudziądzka 5, 87-100 Toruń, Poland
References
1. Phys. Rev. 1962, 128, 2687.
< N. R., Sinanoglu O.: https://doi.org/10.1103/PhysRev.128.2687>
2. An. R. Soc. Esp. Fis. Quim. 1968, 64, 177.
E.:
3. Phys. Rev. A 1993, 48, 3561.
< M.: https://doi.org/10.1103/PhysRevA.48.3561>
4. Comput. Methods Sci. Technol. 2003, 9, 67.
< J., Cyrnek L.: https://doi.org/10.12921/cmst.2003.09.01.67-78>
5. Ann. Phys. (Leipzig) 2004, 13, 181.
< J., Cyrnek L.: https://doi.org/10.1002/andp.200310071>
6. Phys. Rev. A 1990, 42, 1178.
< A., Ghosh S. K.: https://doi.org/10.1103/PhysRevA.42.1178>
7. J. Chem. Phys. 1991, 94, 517.
< S. K., Samanta A.: https://doi.org/10.1063/1.460368>
8. Nuovo Cimento Soc. Ital. Fis., B 1998, 113, 299.
S. K., Gupta N.:
9. Collect. Czech. Chem. Commun. 2005, 70, 864.
< J., Cyrnek L.: https://doi.org/10.1135/cccc20050864>
10. J. Phys. B: At. Mol. Opt. Phys. 1998, 31, 4537.
< R., Mujica V.: https://doi.org/10.1088/0953-4075/31/20/012>
11. J. Chem. Phys. 2005, 123, 024102.
< E. V., Lopez X., Ugalde J. M.: https://doi.org/10.1063/1.1940611>
12. Phys. Rev. A 2006, 74, 042504.
< X., Ugalde J. M., Echevarría L., Ludeña E. V.: https://doi.org/10.1103/PhysRevA.74.042504>
13. Int. J. Quantum Chem. 2008, 108, 2253.
< J.: https://doi.org/10.1002/qua.21751>
14. Among unexpected consequences of specific symmetry properties of this model one can mention the independence of the dipole transition probabilities due to an operator D ~ r1 + r2 + r3 of the specific form of V (see ref.5).
15. Piela L.: Ideas of Quantum Chemistry, Chap. 6. Elsevier, Amsteradam 2007.
16. J. Chem. Phys. 2006, 124, 014105.
< U.: https://doi.org/10.1063/1.2141509>
17a. J. Math. Phys. 1969, 10, 2191.
< F.: https://doi.org/10.1063/1.1664820>
17b. J. Math. Phys. 1969, 10, 2197.
< F.: https://doi.org/10.1063/1.1664821>
17c. J. Math. Phys. 1971, 12, 419.
< F.: https://doi.org/10.1063/1.1665604>
18. Moshinsky M.: The Harmonic Oscillator in Modern Physics: From Atoms to Quarks. Gordon and Breach, New York 1969.
19. This class of solution does not cover an important case of ω = 0, δ = –1 (the H-like atom) – in this case the discrete spectrum eigenfunctions for r → __MATH__ behave as exp(–mζr/n).
20. Commun. Pure Appl. Math. 1957, 10, 151.
< T.: https://doi.org/10.1002/cpa.3160100201>