Collect. Czech. Chem. Commun.
2008, 73, 1671-1680
https://doi.org/10.1135/cccc20081671
Fluorination of Fluorene, Dibenzofuran and Their Open Analogues with Caesium Fluoroxysulfate and Related Fluorinating Reagents
Jernej Iskraa,*, Stojan Stavbera and Marko Zupana,b
a Laboratory of Organic and Bioorganic Chemistry, Department of Physical and Organic Chemistry, "Jožef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
References
1a. Chem. Soc. Rev. 2008, 37, 308.
< D.: https://doi.org/10.1039/b711844a>
1b. Chem. Soc. Rev. 2008, 37, 320.
< S., Moore P. R., Swallow S., Gouverneur V.: https://doi.org/10.1039/b610213c>
1c. Welsh J. T., Eswaakrishnaan S. (Eds): Fluorine in Bioorganic Chemistry. John Wiley and Sons, New York 1991.
1d. Kirsch P.: Modern Fluoroorganic Chemistry. VCH, Weinheim 2004.
1e. Laali K. K., Atta-Ur-Rahman (Eds): Advances in Organic Synthesis, Vol. 2. Bentham Science Publishers Ltd., Hilversum 2006.
2. Baasner B., Hagemann H., Tatlow J. C. (Eds): Methods of Organic Chemistry (Houben–Weyl), Vol. E 10a. Georg Thieme Verlag, Stuttgart 1999.
3a. Org. Biomol. Chem. 2006, 4, 26.
< M., Gouverneur V.: https://doi.org/10.1039/b513399h>
3b. Acta Chim. Slov. 2005, 52, 13.
S., Zupan M.:
3c. Angew. Chem. Int. Ed. 2005, 44, 192.
< P. T., Duron S. G., Burkart M. D., Vincent S. P., Wong C. H.: https://doi.org/10.1002/anie.200400648>
3d. Acc. Chem. Res. 2004, 37, 31.
< R. P., Shreeve J. M.: https://doi.org/10.1021/ar030043v>
3e. Usp. Khim. 1999, 68, 725.
< G. C., Fainzilberg A. A.: https://doi.org/10.1070/RC1999v068n08ABEH000293>
4a. Chem. Rev. 1996, 96, 1717.
< S.: https://doi.org/10.1021/cr941147+>
4b. J. Org. Chem. 1984, 49, 806.
< O., Tor Y., Hebel D., Rozen S.: https://doi.org/10.1021/jo00179a012>
5. Zupan M. in: Methods in Organic Synthesis (Houben–Weyl), Vol. E 10a (B. Baasner, H. Hagemann and J. C. Tatlow, Eds), p. 270. Georg Thieme Verlag, Stuttgart 1999.
6. J. Am. Chem. Soc. 1979, 101, 3384.
< E. H., Basile L. J., Tompson R. C.: https://doi.org/10.1021/ja00506a046>
7a. J. Am. Chem. Soc. 1981, 103, 1964.
< D. P., Arthur C. D., Winans R. E., Appelmann E. H.: https://doi.org/10.1021/ja00398a015>
7b. J. Chem. Soc., Chem. Commun. 1981, 148.
< S., Zupan M.: https://doi.org/10.1039/c39810000148>
7c. J. Org. Chem. 1985, 50, 3609.
< S., Zupan M.: https://doi.org/10.1021/jo00219a032>
7d. J. Org. Chem. 1991, 56, 7347.
< S., Zupan M.: https://doi.org/10.1021/jo00026a032>
7e. Tetrahedron 1992, 48, 5875.
< S., Zupan M.: https://doi.org/10.1016/S0040-4020(01)90179-6>
8a. Taylor R.: Electrophilic Aromatic Substitution. Wiley, Chichester 1990.
8b. Sargent M. V., Stransky P. O. in: Advances in Heterocyclic Chemistry, Vol. 35 (A. R. Katritzky, Ed.). Academic Press, Orlando 1984.
8c. Traven V. F.: Frontier Orbitals and Properties of Organic Molecules. Ellis Horwood, New York 1992.
8d. Frank N. L., Siegel J. S.: Advances in Theoretically Interesting Molecules, Vol. 3, p. 209. JAI Press Inc., Greenwich 1995.
9a. Tetrahedron 1996, 52, 11341.
< M., Iskra J., Stavber S.: https://doi.org/10.1016/0040-4020(96)00661-8>
9b. J. Org. Chem. 1998, 63, 878.
< M., Iskra J., Stavber S.: https://doi.org/10.1021/jo971496e>
9c. Org. Biomol. Chem. 2003, 1, 1528.
< J., Zupan M., Stavber S.: https://doi.org/10.1039/b301652h>
10. J. Fluorine Chem. 1992, 58, 354.
M., Stavber S.:
11. J. Fluorine Chem. 1996, 78, 137.
< M., Papez M., Stavber S.: https://doi.org/10.1016/0022-1139(96)03423-9>
12. J. Am. Chem. Soc. 1992, 114, 8818.
< T.: https://doi.org/10.1021/ja00049a012>
13. J. Chem. Soc. 1958, 3079.
< M. J. S., Urch D. S.: https://doi.org/10.1039/jr9580003079>
14a. J. Am. Chem. Soc. 1962, 84, 3953.
< U.-J. P., Berliner E.: https://doi.org/10.1021/ja00879a030>
14b. J. Chem. Soc. 1965, 6893.
< P. B. D., Johnson E. A., Lomas J. S.: https://doi.org/10.1039/jr9650006893>
15. J. Org. Chem. 1991, 56, 7347.
< S., Zupan M.: https://doi.org/10.1021/jo00026a032>
16. J. Org. Chem. 1991, 56, 4671.
< T., Tomioka N., Hamanaka K., Kakihara H., Fukushima M., Morita T., Kitajima H: https://doi.org/10.1021/jo00015a020>
17. Acta Chem. Scand. 1992, 46, 312.
< L., Radner F.: https://doi.org/10.3891/acta.chem.scand.46-0312>
18. J. Chem. Soc. 1961, 4921.
< C., Spearry J. A.: https://doi.org/10.1039/jr9610004921>
19. Inorg. Synth. 1986, 24, 22.
< E. H.: https://doi.org/10.1002/9780470132555.ch8>
20. J. Am. Chem. Soc. 1959, 81, 1092.
< T. L., Wetzel W. H., Namkung M. J., Pan H.-L.: https://doi.org/10.1021/ja01514a019>
21. J. Org. Chem. 1961, 26, 3202.
< F. A., Quo Q., Sheridan J.: https://doi.org/10.1021/jo01067a040>
22. J. Chem. Soc., Perkin Trans. 2 1977, 1051.
< M. J., Mitchell P. J., Phillips L.: https://doi.org/10.1039/p29770001051>
23. Spectrochim. Acta A 1981, 37, 689.
< J. K.: https://doi.org/10.1016/0584-8539(81)80068-2>
24. J. Org. Chem. 1956, 21, 457.
< R. G., Willis H. B., Martin G. A., Kirkpatrick W. H., Swiss J., Gilman H.: https://doi.org/10.1021/jo01110a022>
25. J. Fluorine Chem. 1994, 68, 181.
< J. R., Mahaffy C. A. L.: https://doi.org/10.1016/0022-1139(93)03040-S>
26. J. Org. Chem. 1980, 45, 3476.
< F. J.: https://doi.org/10.1021/jo01305a022>