Collect. Czech. Chem. Commun.
2008, 73, 1799-1813
https://doi.org/10.1135/cccc20081799
HFPO Trimer-Based Alkyl Triflate, a Novel Building Block for Fluorous Chemistry. Preparation, Reactions and 19F gCOSY Analysis
Ondřej Kysilkaa, Markéta Rybáčkováa, Martin Skalickýa, Magdalena Kvíčalováb, Josef Cvačkac and Jaroslav Kvíčalaa,*
a Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
c Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
References
1a. A. M.: J. Macromol. Sci., Part C: Pol. Rev. 2006, 46, 245.
<https://doi.org/10.1080/00222340600796322>
1b. C., Gavezotti P., Strepparola E.: J. Fluorine Chem. 1999, 95, 51.
<https://doi.org/10.1016/S0022-1139(98)00298-X>
1c. K. J. L., Kratzer R. H.: J. Fluorine Chem. 1994, 67, 169.
<https://doi.org/10.1016/0022-1139(93)02943-9>
1d. P. G., Lugert E. C., Rábai J., Amin E. A., Bühlmann P.: J. Am. Chem. Soc. 2005, 127, 16976.
<https://doi.org/10.1021/ja055816k>
1e. H., Schwertfeger W., Siegemund G.: Angew. Chem. 1985, 97, 164.
<https://doi.org/10.1002/ange.19850970305>
2a. Warnell J. L.: U.S. 3,351,619 (1967), Chem. Abstr. 1968, 68, 3513.
2b. Fritz C. G., Selman S.: U.S. 3,291,843 (1966), Chem. Abstr. 1967, 66, 38427.
2c. L. M., Baranova L. A., Tumanova A. V., Sass V. P., Sokolov S. V.: Zh. Org. Chim. 1972, 8, 1790.
2d. T.: Tetrahedron Lett. 1976, 17, 1857.
<https://doi.org/10.1016/S0040-4039(00)92944-7>
2e. Krespan C. G.: U.S. 4,594,458 (1986), Chem. Abstr. 1985, 102, 62665.
3. O., Kvíčala J., Dědek V.: Collect. Czech. Chem. Commun. 1983, 48, 2805.
<https://doi.org/10.1135/cccc19832805>
4a. O., Paleček J., Michálek J.: J. Fluorine Chem. 2002, 114, 51.
<https://doi.org/10.1016/S0022-1139(01)00562-0>
4b. M.-H., Rozen S., Smart B. E.: J. Org. Chem. 1994, 59, 4332.
<https://doi.org/10.1021/jo00094a058>
4c. D. N., Gorbunova T. I., Zapevalov A. Ya., Kirichenko V. E., Saloutin V. I.: Russ. J. Org. Chem. 2007, 43, 656.
<https://doi.org/10.1134/S1070428007050041>
4d. E. N., Konyushko O. V., Glazkov A. A., Krukovsky S. P.: Russ. Chem. Bull. 1996, 45, 1501.
<https://doi.org/10.1007/BF01434246>
4e. M., Lekontseva G. I., Neifeld P. G., Pospelova N. B.: Zh. Vses. Khim. Obshch. im. D. I. Mendeleeva 1980, 25, 212.
5. F., Lastécouéres D., Vincent J. M., Verlhac J. B.: J. Org. Chem. 1999, 64, 4969.
<https://doi.org/10.1021/jo990134z>
6a. T., Kvíčala J., Mysík P., Paleta O., Čermák J.: Synlett 2001, 685.
<https://doi.org/10.1055/s-2001-13360>
6b. T., Kvíčala J., Paleta O., Čermák J.: Tetrahedron 2002, 58, 3841.
<https://doi.org/10.1016/S0040-4020(02)00212-0>
7. T., Kvíčala J., Paleta O.: Collect. Czech. Chem. Commun. 2003, 68, 1039.
<https://doi.org/10.1135/cccc20031039>
8a. J., Szabó D., Borbás E. K., Kövesi I., Kövesdi I., Csámpai A., Gömöry Á., Pashinnik V. E., Shermolovich Y. G.: J. Fluorine Chem. 2002, 114, 199.
<https://doi.org/10.1016/S0022-1139(02)00027-1>
8b. D., Thiele T., Ruhmann R.: J. Fluorine Chem. 1996, 79, 145.
<https://doi.org/10.1016/S0022-1139(96)03490-2>
8c. L. J., Rutherford D., Juliette J. J. J., Gladysz J. A.: J. Org. Chem. 1998, 63, 6302.
<https://doi.org/10.1021/jo980692y>
8d. L. L., Shainyan B. A.: Russ. J. Org. Chem. 2005, 42, 1068.
<https://doi.org/10.1134/S1070428006070256>
8e. P.: J. Fluorine Chem. 1974, 4, 25.
<https://doi.org/10.1016/S0022-1139(00)81719-4>
8f. T., Murotani E., Watanabe K., Itoh M., Shirakawa D., Kawahara K., Kaneko I., Tatematsu S.: J. Fluorine Chem. 2004, 125, 1695.
<https://doi.org/10.1016/j.jfluchem.2004.09.024>
9. J. L., Jing N., Newmark R. A.: Fluorine Chem. 2004, 125, 1331.
<https://doi.org/10.1016/j.jfluchem.2004.03.011>
10. O., Danda A., Štěpán L., Kvíčala J., Dědek V.: J. Fluorine Chem. 1989, 45, 331.
<https://doi.org/10.1016/S0022-1139(00)82869-9>
11a. H., Shreeve J. M.: Eur. J. Inorg. Chem. 2005, 2573.
<https://doi.org/10.1002/ejic.200500129>
11b. R. P., Shreeve J. M.: Chem. Commun. 2003, 1366.
<https://doi.org/10.1039/b301968c>
11c. P. G., Lugert E. C., Rábai J., Amin E. A., Bühlmann P.: J. Am. Chem. Soc. 2005, 127, 16976.
<https://doi.org/10.1021/ja055816k>
11d. J., Winter F., Deelman B.-J., van Koten G.: Org. Lett. 2002, 4, 3851.
<https://doi.org/10.1021/ol026700l>
11e. M. J., Aki S. N. V. K., Anderson J. L., Dixon J. K., Brennecke J. F.: J. Phys. Chem. B 2007, 111, 9001.
<https://doi.org/10.1021/jp071897q>
11f. Y., Iwamoto K., Furutani H., Matsushita Y., Abe Y., Matsumoto K., Monda K., Hayase S., Kawatsura M., Itoh T.: Tetrahedron Lett. 2006, 47, 1801.
<https://doi.org/10.1016/j.tetlet.2006.01.017>
11g. N. V., Welz-Biermann U., Kucheryna A., Bissky G., Willner H.: J. Fluorine Chem. 2005, 126, 1150.
<https://doi.org/10.1016/j.jfluchem.2005.04.017>
12a. H., Young B. A., Rausch D. J., Rickert P., Stepinski D. C., Dietz M. L.: Talanta 2006, 69, 527.
<https://doi.org/10.1016/j.talanta.2005.09.046>
12b. M. J., Aki S. V. K., Anderson J. L., Dixon J. K., Brennecke J. F.: J. Phys. Chem. B 2007, 111, 9001.
<https://doi.org/10.1021/jp071897q>
12c. R. E., Culbertson B. H., Dai S., Luo H., DePaoli D. W.: J. Phys. Chem. B 2004, 108, 721.
<https://doi.org/10.1021/jp036051a>
12d. T. L., Bates E. D., Dorman S. C., Davis J. H., Jr.: Chem. Commun. 2000, 2051.
<https://doi.org/10.1039/b005418f>
12e. A., Laurenczy G., Küsters E., Sedelmeier G., Dyson P. J.: J. Phys. Org. Chem. 2007, 20, 109.
<https://doi.org/10.1002/poc.1131>
13. L., Chen W., Bickley J. F., Steiner A., Xiao J.: Organomet. Chem. 2000, 598, 409.
<https://doi.org/10.1016/S0022-328X(00)00008-5>

