Collect. Czech. Chem. Commun.
2008, 73, 147-160
https://doi.org/10.1135/cccc20080147
Spectrofluorimetric Study on Inclusion Complexation of 2-Amino-6-fluorobenzothiazole with β-Cyclodextrin
Rajaram Rajamohana, Sundarajulu Kothai Nayakib,* and Meenakshisundaram Swaminathana
a Department of Chemistry, Annamalai University, Annamalainagar 608 002, India
b Chemistry Division, FEAT, Annamalai University, Annamalainagar 608 002, India
References
1. Duchene D.: Cyclodextrins and Their Industrial Uses. Editions de Sante, Paris 1988.
2. A., Ndou T. T., Zung J. B., Greene K. L., Live D. H., Warner I. M.: J. Am. Chem. Soc. 1991, 113, 1572.
<https://doi.org/10.1021/ja00005a019>
3. A., Duran-Meras I., Salinas F., Warner I. M., Ndou T. T.: Anal. Chim. Acta 1991, 255, 317.
<https://doi.org/10.1016/0003-2670(91)80062-X>
4. S., Cline Love L. J.: Anal. Chem. 1984, 56, 331.
<https://doi.org/10.1021/ac00267a007>
5. Szejtli J.: Cyclodextrin and Their Inclusion Complexes. Akademiai Kiado, Budapest 1982.
6. Szejtli J., Osa T.: Comprehensive Supramolecular Chemistry. Elsevier Science Ltd., Oxford (U.K.) 1996.
7. G. M.: Analyst 1999, 124, 587.
<https://doi.org/10.1039/a809180c>
8. Hurtubise R. J.: Phosphorimetry Theory, Instrumentation and Applications, p. 320. VCH, New York 1990.
9. J. A., Escandar G. M.: Analyst 1999, 124, 1833.
<https://doi.org/10.1039/a906719a>
10. S., Purdy W. C.: Chem. Rev. 1992, 92, 1457.
<https://doi.org/10.1021/cr00014a009>
11. Szejtli J.: Cyclodextrins Technology. Kluwer Academic, Dordrecht 1988.
12. E. V., Martinez-Martinez F. J., Hopfl H., Padilla-Martinez I. I.: ARKIVOC 2003, 11, 100.
<https://doi.org/10.3998/ark.5550190.0004.b11>
13. A. M. A.: Can. J. Chem. 1993, 71, 318.
<https://doi.org/10.1139/v93-047>
14. M. C., Pitchumani K., Srinivasan C.: J. Photochem. Photobiol. 2002, 149, 131.
<https://doi.org/10.1016/S1010-6030(02)00016-3>
15. K., Durai Manickam M. C., Srinivasan C.: Tetrahedron Lett. 1991, 32, 2975.
<https://doi.org/10.1016/0040-4039(91)80666-T>
16. I. V., Swaminathan M.: J. Chem. Res. 2006, 523.
<https://doi.org/10.3184/030823406778256379>
17. I. V., Swaminathan M.: J. Fluorescence 2006, 16, 501.
<https://doi.org/10.1007/s10895-006-0074-z>
18. P., Kothai Nayaki S., Swaminathan M.: Spectrochim. Acta, Part A 2007, 68, 651.
<https://doi.org/10.1016/j.saa.2006.12.042>
19. I. V., Swaminathan M.: J. Lumin. 2007, 127, 713.
<https://doi.org/10.1016/j.jlumin.2007.04.006>
20. I. V., Swaminathan M.: J. Fluorescence 2006, 16, 697.
<https://doi.org/10.1007/s10895-006-0112-x>
21. R., Kothai Nayaki S., Swaminathan M.: Spectrochim. Acta, Part A 2007, 69, 371.
<https://doi.org/10.1016/j.saa.2007.04.008>
22. H. A., Hildebrand J. H.: J. Am. Chem. Soc. 1949, 71, 2703.
<https://doi.org/10.1021/ja01176a030>
23. M., Imamura M., Ikehara K., Hamai Y.: J. Phys. Chem. 1981, 85, 1820.
<https://doi.org/10.1021/j150613a012>
24. K. A., Klein V. K. A., Sawaiyan A.: Chem. Lett. 1993, 212, 581.
<https://doi.org/10.1016/0009-2614(93)85489-B>
25. M. A., El-Gezawy H. S., El-Baradie H. Y., Issa R. M.: Spectrochim. Acta, Part A 2002, 58, 493.
<https://doi.org/10.1016/S1386-1425(01)00550-9>
26. M. A., El-Gezawy H. S.: J. Photochem. Photobiol., A 2003, 155, 151.
<https://doi.org/10.1016/S1010-6030(02)00375-1>
27. V. K., Karunanithi P., Ramamurthy P.: Langmuir 2001, 17, 4056.
<https://doi.org/10.1021/la0101200>
28. D. W., Kim Y. H., Kang S. G., Yoon M., Kim D. J.: J. Chem. Soc., Faraday Trans. 1996, 92, 29.
<https://doi.org/10.1039/ft9969200029>
29. E. M. M.: Proc. Biochem. 2004, 39, 1033.
<https://doi.org/10.1016/S0032-9592(03)00258-9>
30. L. M. A., Fraceto L. F., Santana M. H. A., Pertinhaz T. A., Junior S. O., Paula E. D.: J. Pharm. Biomed. Anal. 2005, 39, 956.
<https://doi.org/10.1016/j.jpba.2005.06.010>
31. J. R., Gines J. M., Arias M. J., Rabasco A. M.: Int. J. Pharm. 1995, 114, 95.
<https://doi.org/10.1016/0378-5173(94)00220-Y>

