Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2008, 73, 481-506
https://doi.org/10.1135/cccc20080481

Handling Electrostatic Interactions in Molecular Simulations: A Systematic Study

Jiří Kolafaa, Filip Moučkab and Ivo Nezbedab,c,*

a Department of Physical Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
b Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic
c E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic

Crossref Cited-by Linking

  • Zimmermann Alexandre S., Lírio Raphael, Castro Beatriz Montes, Romanielo Lucienne, Mattedi Silvana: How well can damped shifted force Monte Carlo predict vapor–liquid equilibria for natural gas systems?. Braz. J. Chem. Eng. 2024. <https://doi.org/10.1007/s43153-024-00475-7>
  • Yonetani Yoshiteru: Dielectric continuum model examination of real-space electrostatic treatments. The Journal of Chemical Physics 2021, 154. <https://doi.org/10.1063/5.0033053>
  • Caro-Ortiz Sebastián, Hens Remco, Zuidema Erik, Rigutto Marcello, Dubbeldam David, Vlugt Thijs J.H.: Molecular simulation of the vapor-liquid equilibria of xylene mixtures: Force field performance, and Wolf vs. Ewald for electrostatic interactions. Fluid Phase Equilibria 2019, 485, 239. <https://doi.org/10.1016/j.fluid.2018.12.006>
  • Waibel Christian, Feinler Mathias Simon, Gross Joachim: A Modified Shifted Force Approach to the Wolf Summation. J. Chem. Theory Comput. 2019, 15, 572. <https://doi.org/10.1021/acs.jctc.8b00343>
  • Waibel Christian, Gross Joachim: Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor–Liquid Equilibria. J. Chem. Theory Comput. 2018, 14, 2198. <https://doi.org/10.1021/acs.jctc.7b01190>
  • Klíma Martin, Kolafa Jiří: Direct Molecular Dynamics Simulation of Nucleation during Supersonic Expansion of Gas to a Vacuum. J. Chem. Theory Comput. 2018, 14, 2332. <https://doi.org/10.1021/acs.jctc.8b00066>
  • Teplukhin A. V.: Short-range potential functions in computer simulations of water and aqueous solutions. J Struct Chem 2016, 57, 1627. <https://doi.org/10.1134/S0022476616080205>
  • Wells Brad A., Chaffee Alan L.: Ewald Summation for Molecular Simulations. J. Chem. Theory Comput. 2015, 11, 3684. <https://doi.org/10.1021/acs.jctc.5b00093>
  • Chialvo Ariel A., Vlcek Lukas: Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results. J. Phys. Chem. B 2014, 118, 13658. <https://doi.org/10.1021/jp509074p>
  • Dinpajooh Mohammadhasan, Keasler Samuel J., Truhlar Donald G., Siepmann J. Ilja: Assessing group-based cutoffs and the Ewald method for electrostatic interactions in clusters and in saturated, superheated, and supersaturated vapor phases of dipolar molecules. Theor Chem Acc 2011, 130, 83. <https://doi.org/10.1007/s00214-011-0973-1>
  • Kolafa Jiří, Lísal Martin: Time-Reversible Velocity Predictors for Verlet Integration with Velocity-Dependent Right-Hand Side. J. Chem. Theory Comput. 2011, 7, 3596. <https://doi.org/10.1021/ct200108g>
  • Míguez J. M., González-Salgado D., Legido J. L., Piñeiro M. M.: Calculation of interfacial properties using molecular simulation with the reaction field method: Results for different water models. The Journal of Chemical Physics 2010, 132. <https://doi.org/10.1063/1.3422528>
  • Aragones J. L., Conde M. M., Noya E. G., Vega C.: The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase. Phys. Chem. Chem. Phys. 2009, 11, 543. <https://doi.org/10.1039/B812834K>