Collect. Czech. Chem. Commun.
2008, 73, 518-532
https://doi.org/10.1135/cccc20080518
Simulation of Fluid Phase Equilibria in Square-Well Fluids: From Three to Two Dimensions
Horst L. Vörtler
Molecular Dynamics and Computer Simulation Research Group, Institute of Theoretical Physics, University of Leipzig, Postfach 100920, 04009 Leipzig, Germany
References
1. J. Phys., Condens. Matter 1990, 2, 8989.
< R.: https://doi.org/10.1088/0953-8984/2/46/001>
2. Rep. Prog. Phys. 1999, 62, 1573.
< L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M.: https://doi.org/10.1088/0034-4885/62/12/201>
3. J. Chem. Phys. 2000, 112, 5168.
< H. L., Smith W. R.: https://doi.org/10.1063/1.481072>
4. J. Phys. Chem. B 2008, 112, 4656.
< H. L., Schäfer K., Smith W. R.: https://doi.org/10.1021/jp073726r>
5. Chem. Phys. Lett. 2003, 377, 557.
< H. L., Kettler M.: https://doi.org/10.1016/S0009-2614(03)01176-X>
6. Mol. Phys. 2006, 104, 233.
< H. L., Kettler M.: https://doi.org/10.1080/00268970500404455>
7. J. Chem. Phys. 1991, 95, 1999.
< A., Hall C. K.: https://doi.org/10.1063/1.460998>
8. Mol. Phys. 1997, 90, 353.
< I., Slovak J.: https://doi.org/10.1080/002689797172372>
9. Mol. Phys. 2002, 100, 2531.
< F., Avalos E., Espindola R., Rull L. F., Jackson G., Lago S.: https://doi.org/10.1080/00268970210132522>
10. J. Chem. Phys. 2007, 126, 024702.
< J. K., Kwak S. K.: https://doi.org/10.1063/1.2424460>
11. Allen M. P., Tildesley D. J.: Computer Simulations of Liquids. Clarendon, Oxford 1987.
12. Frenkel D., Smit B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego 2002.
13. J. Chem. Phys. 1963, 39, 2808.
< B.: https://doi.org/10.1063/1.1734110>
14. Mol. Phys. 2003, 101, 1199.
< S., Chapman W. G.: https://doi.org/10.1080/0026897031000114800>
15. Schäfer K.: M.S. Thesis. Universität Leipzig, Leipzig 2006.
16. Mol. Phys. 1999, 96, 849.
< S., Malijevsky A., Kao R., Smith W. R., del Rio F.: https://doi.org/10.1080/002689799165233>
17. J. Stat. Phys. 1978, 19, 563.
< B.: https://doi.org/10.1007/BF01011768>
18. J. Chem. Phys. 1989, 91, 461.
< H., Peterson H. G.: https://doi.org/10.1063/1.457480>
19. Phys. Rev. B 1972, 5, 4529.
< F. J.: https://doi.org/10.1103/PhysRevB.5.4529>
20. J. Chem. Phys. 1994, 101, 3190.
< D. G., Jackson G.: https://doi.org/10.1063/1.467565>
21. J. Chem. Phys. 1992, 96, 2296.
< L., de Miguel E., Rull L. F., Jackson G., McLure I. A.: https://doi.org/10.1063/1.462080>
22. Phys. Rev. A 1982, 26, 556.
< H., Binder K.: https://doi.org/10.1103/PhysRevA.26.556>
23. J. Chem. Phys. 2004, 120, 5293.
< L. G., Virnau P., Müller M., Binder K.: https://doi.org/10.1063/1.1645784>
24. J. Chem. Phys. 2006, 125, 034705.
< L. G., Chen V. K., Errington J. R.: https://doi.org/10.1063/1.2218845>
25. Chandler D.: Introduction to Modern Statistical Mechanics. Oxford University Press, Oxford 1987.
26. J. Chem. Phys. 1981, 75, 5857.
< M., Nakanishi H.: https://doi.org/10.1063/1.442035>