Collect. Czech. Chem. Commun. 2008, 73, 811-821
https://doi.org/10.1135/cccc20080811

On the C-C Coupling of the Naphthylium Ion with Methane

Jana Roithováa,b, Claire L. Rickettsa,c and Detlef Schrödera,*

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Department of Organic Chemistry, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
c Space Science Division, NASA Ames Research Center, Mail stop 245-6, Moffett Field, CA 94035, U.S.A.

References

1. Lunsford J. H.: Catal. Today 2000, 63, 165. <https://doi.org/10.1016/S0920-5861(00)00456-9>
2. Olah G. A., Goeppert A., Prakash G. K. S.: Beyond Oil and Gas: The Methanol Economy. Wiley–VCH, Weinheim 2006.
3. Zahradník R.: Acc. Chem. Res. 1995, 28, 306. <https://doi.org/10.1021/ar00055a004>
4. Havlas Z., Bauwe E., Zahradník R.: Chem. Phys. Lett. 1985, 121, 330. <https://doi.org/10.1016/0009-2614(85)87187-6>
5. Hess B. A., Zahradník R.: J. Am. Chem. Soc. 1990, 112, 5731. <https://doi.org/10.1021/ja00171a009>
6. Schwarz H., Schröder D.: Pure Appl. Chem. 2000, 72, 2319. <https://doi.org/10.1351/pac200072122319>
7. Schröder D., Schwarz H.: Proc. Natl. Acad. Sci. U.S.A. 2008, in press
8. Nachtigallová D., Roeselová M., Zahradník R.: Chem. Phys. Lett. 1997, 270, 357. <https://doi.org/10.1016/S0009-2614(97)00379-5>
9. Roithová J., Schröder D.: Angew. Chem. Int. Ed. 2006, 45, 5705.
10. Feyel S., Döbler J., Höckendorf R., Beyer M. K., Sauer J., Schwarz H.: Angew. Chem. Int. Ed. 2008, 47, 1946. <https://doi.org/10.1002/anie.200704791>
11. Waite J. H., Jr., Niemann H., Yelle R. V., Kasprzak W. T., Cravens T. E., Luhmann J. G., Mcnutt R. L., Ip W.-H., Gell D., De La Haye V., Müller-Wordag I., Magee B., Borggren N., Ledvina S., Fletcher G., Walter E., Miller R., Scherer S., Thorpe R., Xu J., Block B., Arnett K.: Science 2005, 308, 982. <https://doi.org/10.1126/science.1110652>
12. Keller C., Anicich V., Cravens T.: Planet. Space Sci. 1998, 46, 1157. <https://doi.org/10.1016/S0032-0633(98)00053-1>
13. Carrasco N., Dutuit O., Thissen R., Banaszkiewicz M., Pernot P.: Planet. Space Sci. 2007, 55, 141. <https://doi.org/10.1016/j.pss.2006.06.004>
14. Goulay F., Osborn D. L., Taatjes C. A., Zou P., Meloni G., Leone S. R.: Phys. Chem. Chem. Phys. 2007, 9, 4291. <https://doi.org/10.1039/b614502g>
15. Roithová J., Schröder D.: J. Am. Chem. Soc. 2006, 128, 4208. <https://doi.org/10.1021/ja0600429>
16. Roithová J., Schröder D.: Chem. Eur. J. 2007, 13, 2893. <https://doi.org/10.1002/chem.200600913>
17. Roithová J., Schröder D.: Phys. Chem. Chem. Phys. 2007, 9, 731. <https://doi.org/10.1039/b615648g>
18. Ricketts C. L., Schröder D., Alcaraz C., Roithová J.: Chem. Eur. J. 2008, 14, 4779. <https://doi.org/10.1002/chem.200800524>
19. Roithová J., Schröder D.: Phys. Chem. Chem. Phys. 2007, 9, 2341. <https://doi.org/10.1039/b617681j>
20. Anicich V. G.: An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics. JPL Publication 03–19, Jet Propulsion Laboratory, Pasadena (CA) 2003.
21. Anicich V. G., Wilson P. F., McEwan M. J.: J. Am. Soc. Mass Spectrom. 2006, 17, 544. <https://doi.org/10.1016/j.jasms.2005.11.022>
22. Schröder D., Schwarz H., Milko P., Roithová J.: J. Phys. Chem. A 2006, 110, 8346. <https://doi.org/10.1021/jp056962f>
23. See also: Ascenzi D., Cont N., Guella G., Franceschi P., Tosi P.: J. Phys. Chem. A 2007, 111, 12513. <https://doi.org/10.1021/jp075860h>
24. Roithová J., Schröder D., Míšek J., Stará I. G., Starý I.: J. Mass Spectrom. 2007, 42, 1233. <https://doi.org/10.1002/jms.1256>
25. Schröder D., Loos J., Schwarz H., Thissen R., Dutuit O.: J. Phys. Chem. A 2004, 108, 9931. <https://doi.org/10.1021/jp0479973>
26. Schröder D., Roithová J., Schwarz H.: Int. J. Mass Spectrom. 2007, 254, 197. <https://doi.org/10.1016/j.ijms.2006.05.024>
27. Roithová J., Milko P., Ricketts C. L., Schröder D., Besson T., Dekoj V., Bělohradský M.: J. Am. Chem. Soc. 2007, 129, 10141. <https://doi.org/10.1021/ja071058h>
28. Ricketts C. L., Schröder D., Roithová J., Schwarz H., Thissen R., Dutuit O., Žabka J., Herman Z., Price S. D.: Phys. Chem. Chem. Phys. 2008, 10, 5135. <https://doi.org/10.1039/b800865e>
29. Jagoda-Cwiklik B., Jungwirth P., Rulíšek L., Milko P., Roithová J., Lemaire J., Maitre P., Ortega J. M., Schröder D.: ChemPhysChem 2007, 8, 1629. <https://doi.org/10.1002/cphc.200700196>
30. Ryan M. F., Fiedler A., Schröder D., Schwarz H.: Organometallics 1994, 13, 4072. <https://doi.org/10.1021/om00022a051>
31. Schwarz J., Schröder D., Schwarz H., Heinemann C., Hrušák J.: Helv. Chim. Acta 1996, 79, 1110. <https://doi.org/10.1002/hlca.19960790419>
32. Schröder D., Schwarz H., Clemmer D. E., Chen Y.-M., Armentrout P. B., Baranov V. I., Böhme D. K.: Int. J. Mass Spectrom. Ion Processes 1997, 161, 177. <https://doi.org/10.1016/S0168-1176(96)04428-X>
33. McEwan M. J., Scott G. B. I., Anicich V. G.: Int. J. Mass Spectrom. Ion Processes 1998, 172, 209. <https://doi.org/10.1016/S0168-1176(97)00236-X>
34. Schröder D., Schwarz H., Schenk S., Anders E.: Angew. Chem. Int. Ed. 2003, 42, 5087. <https://doi.org/10.1002/anie.200351440>
35. Ascenzi D., Bassi D., Franceschi P., Hadjar O., Tosi P., Di Stefano M., Rosi M., Sgamellotti A.: J. Chem. Phys. 2004, 121, 6728. <https://doi.org/10.1063/1.1782771>
36. Le Page V., Keheyan Y., Snow T. P., Bierbaum V.: J. Am. Chem. Soc. 1999, 121, 9435. <https://doi.org/10.1021/ja983472a>
37. Keheyan Y.: Chem. Phys. Lett. 2001, 340, 405. <https://doi.org/10.1016/S0009-2614(01)00420-1>
38. Gotkis Y., Naor M., Laskin J., Lifshitz C., Faulk J. D., Dunbar R. C.: J. Am. Chem. Soc. 1993, 115, 7402. <https://doi.org/10.1021/ja00069a044>
39. Gotkis Y., Oleinikova M., Naor M., Lifshitz C.: J. Phys. Chem. 1993, 97, 12282. <https://doi.org/10.1021/j100149a031>
40. Di Stefano M., Rosi M., Sgamellotti A.: Fut. Gen. Comp. Systems 2004, 20, 807. <https://doi.org/10.1016/j.future.2003.11.020>
41. Hrušák J., Schröder D., Iwata S.: J. Chem. Phys. 1997, 106, 7541. <https://doi.org/10.1063/1.473757>
42. Schröder D., Loos J., Schwarz H., Thissen R., Dutuit O., Mourgues P., Audier H.-E.: Angew. Chem. Int. Ed. 2002, 41, 2748. <https://doi.org/10.1002/1521-3773(20020802)41:15<2748::AID-ANIE2748>3.0.CO;2-V>
43. Roithová J., Schröder D.: Chem. Listy, in press.
44. Lifshitz C.: Acc. Chem. Res. 1994, 27, 138. <https://doi.org/10.1021/ar00041a004>
45. Schwarz H., Bohlmann F.: Org. Mass Spectrom. 1973, 7, 23. <https://doi.org/10.1002/oms.1210070105>
46. Gotkis I., Lifshitz C.: Org. Mass Spectrom. 1993, 28, 372. <https://doi.org/10.1002/oms.1210280418>
47. Mormann M., Kuck D.: J. Mass Spectrom. 1999, 34, 384. <https://doi.org/10.1002/(SICI)1096-9888(199904)34:4<384::AID-JMS770>3.0.CO;2-8>
48. Saigusa H., Lim E. C.: J. Am. Chem. Soc. 1995, 117, 3862. <https://doi.org/10.1021/ja00118a023>
49. Kim B., Shin S. K.: J. Phys. Chem. A 2002, 106, 9918. <https://doi.org/10.1021/jp025703c>
50. See also: Kim S. J., Shin C.-H., Shin S. K.: Mol. Phys. 2007, 105, 2541. <https://doi.org/10.1080/00268970701556749>
51. Böhme D. K.: Chem. Rev. 1992, 92, 1487. <https://doi.org/10.1021/cr00015a002>
52. Aschi M., Attina M., Cacace F.: Chem. Eur. J. 1998, 4, 1535. <https://doi.org/10.1002/(SICI)1521-3765(19980807)4:8<1535::AID-CHEM1535>3.0.CO;2-H>