Collect. Czech. Chem. Commun.
2008, 73, 1192-1204
https://doi.org/10.1135/cccc20081192
Effect of Temperature, Pressure and Volume of Reacting Phase on Photocatalytic CO2 Reduction on Suspended Nanocrystalline TiO2
Kamila Kočía,*, Lucie Obalováa, Daniela Placháb and Zdenek Lacnýb
a Department of Physical Chemistry and the Theory of Technological Processes, Faculty of Metallurgy and Material Engineering, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
b Nanotechnology Centre, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
References
1. Chem. Rev. 1995, 95, 69.
< M. R., Martin S. T., Choi W., Bahnemann D. W.: https://doi.org/10.1021/cr00033a004>
2. Chem. Rev. 1993, 93, 341.
< M. A., Dulay M. T.: https://doi.org/10.1021/cr00017a016>
3. J. Catal. 1992, 134, 317.
< N. W., Cole J. R.: https://doi.org/10.1016/0021-9517(92)90231-6>
4. J. Mol. Catal. A: Chem. 2000, 161, 205.
< I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K.: https://doi.org/10.1016/S1381-1169(00)00362-9>
5. Appl. Catal., B 2004, 54, 275.
< F. B., Li X. Z., Ao C. H., Hou M. F., Lee S. C.: https://doi.org/10.1016/j.apcatb.2004.09.006>
6. Acc. Chem. Res. 1995, 28, 503.
< A.: https://doi.org/10.1021/ar00060a006>
7. Bull. Chem. Soc. Jpn. 1991, 64, 1268.
< R., Hashimoto K., Itoh K., Kubota Y., Fujishima A.: https://doi.org/10.1246/bcsj.64.1268>
8. J. Mol. Catal. A: Chem. 2005, 242, 62.
< P., Lusková H., Červený L., Klisaková J., Cajthaml T.: https://doi.org/10.1016/j.molcata.2005.07.024>
9. J. Photochem. Photobiol., A 2006, 183, 35.
< W., Chen D., Gossage J., Li K.: https://doi.org/10.1016/j.jphotochem.2006.02.019>
10. J. Catal. 2006, 238, 342.
< P., Moulijn J. A., Mul G.: https://doi.org/10.1016/j.jcat.2005.12.011>
11. J. Photochem. Photobiol., A 1992, 64, 255.
< K., Inoue K., Yatsu T.: https://doi.org/10.1016/1010-6030(92)85112-8>
12. J. Photochem. Photobiol., A 1996, 98, 87.
< T., Adachi K., Ohta K., Saji A.: https://doi.org/10.1016/1010-6030(96)04334-1>
13. Adv. Photochem. 1995, 19, 235.
J. A., Boucher D. L., Edwards J. G.:
14. Chem. Eng. J. 2008, 136, 50.
< M. M., Brandi R., Alfano O., Cassano A.: https://doi.org/10.1016/j.cej.2007.03.028>
15. Chem. Eng. J. 2008, 136, 242.
< M. M., Brandi R., Alfano O., Cassano A.: https://doi.org/10.1016/j.cej.2007.03.031>
16. Appl. Catal., B 2006, 62, 169.
< N., Basha S. J. S., Shanthi K.: https://doi.org/10.1016/j.apcatb.2005.07.009>
17. Appl. Catal., B 2002, 37, 37.
< I.-H., Chang W.-C., Wu J. C. S.: https://doi.org/10.1016/S0926-3373(01)00322-8>
18. Ind. Eng. Chem. Res. 2006, 46, 2558.
< P., McMartin D., Veawab A., Tontiwachwuthikul P.: https://doi.org/10.1021/ie0505763>
19. J. Electroanal. Chem. 1995, 396, 21.
< M., Yamashita H., Ichinashi Y., Ehara S.: https://doi.org/10.1016/0022-0728(95)04141-A>
20. J. Photochem. Photobiol., A 1999, 126, 117.
< Y., Hayashi H., Takenaka S., Tanaka T., Funabiki T., Yoshida S.: https://doi.org/10.1016/S1010-6030(99)00113-6>
21. J. Photochem. Photobiol., A 1998, 115, 223.
< S., Shimizu Y., Ohta K., Mizuno T.: https://doi.org/10.1016/S1010-6030(98)00274-3>
22. Solar Energy 1994, 53, 187.
< K., Ohta K., Mizuno M.: https://doi.org/10.1016/0038-092X(94)90480-4>
23. Appl. Catal., B 1999, 23, 169.
< M., Kaneco S., Alonso-Vante N.: https://doi.org/10.1016/S0926-3373(99)00079-X>
24. Catal. Today 2006, 115, 269.
< S. S., Zou L., Hu E.: https://doi.org/10.1016/j.cattod.2006.02.057>
25. Catal. Today 2008, 131, 125.
< S. S., Zou L., Hu E.: https://doi.org/10.1016/j.cattod.2007.10.011>