Collect. Czech. Chem. Commun. 2008, 73, 1192-1204
https://doi.org/10.1135/cccc20081192

Effect of Temperature, Pressure and Volume of Reacting Phase on Photocatalytic CO2 Reduction on Suspended Nanocrystalline TiO2

Kamila Kočía,*, Lucie Obalováa, Daniela Placháb and Zdenek Lacnýb

a Department of Physical Chemistry and the Theory of Technological Processes, Faculty of Metallurgy and Material Engineering, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
b Nanotechnology Centre, Technical University Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

References

1. Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W.: Chem. Rev. 1995, 95, 69. <https://doi.org/10.1021/cr00033a004>
2. Fox M. A., Dulay M. T.: Chem. Rev. 1993, 93, 341. <https://doi.org/10.1021/cr00017a016>
3. Cant N. W., Cole J. R.: J. Catal. 1992, 134, 317. <https://doi.org/10.1016/0021-9517(92)90231-6>
4. Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K.: J. Mol. Catal. A: Chem. 2000, 161, 205. <https://doi.org/10.1016/S1381-1169(00)00362-9>
5. Li F. B., Li X. Z., Ao C. H., Hou M. F., Lee S. C.: Appl. Catal., B 2004, 54, 275. <https://doi.org/10.1016/j.apcatb.2004.09.006>
6. Heller A.: Acc. Chem. Res. 1995, 28, 503. <https://doi.org/10.1021/ar00060a006>
7. Cai R., Hashimoto K., Itoh K., Kubota Y., Fujishima A.: Bull. Chem. Soc. Jpn. 1991, 64, 1268. <https://doi.org/10.1246/bcsj.64.1268>
8. Klusoň P., Lusková H., Červený L., Klisaková J., Cajthaml T.: J. Mol. Catal. A: Chem. 2005, 242, 62. <https://doi.org/10.1016/j.molcata.2005.07.024>
9. Ye W., Chen D., Gossage J., Li K.: J. Photochem. Photobiol., A 2006, 183, 35. <https://doi.org/10.1016/j.jphotochem.2006.02.019>
10. Du P., Moulijn J. A., Mul G.: J. Catal. 2006, 238, 342. <https://doi.org/10.1016/j.jcat.2005.12.011>
11. Hirano K., Inoue K., Yatsu T.: J. Photochem. Photobiol., A 1992, 64, 255. <https://doi.org/10.1016/1010-6030(92)85112-8>
12. Mizuno T., Adachi K., Ohta K., Saji A.: J. Photochem. Photobiol., A 1996, 98, 87. <https://doi.org/10.1016/1010-6030(96)04334-1>
13. Davies J. A., Boucher D. L., Edwards J. G.: Adv. Photochem. 1995, 19, 235.
14. Ballari M. M., Brandi R., Alfano O., Cassano A.: Chem. Eng. J. 2008, 136, 50. <https://doi.org/10.1016/j.cej.2007.03.028>
15. Ballari M. M., Brandi R., Alfano O., Cassano A.: Chem. Eng. J. 2008, 136, 242. <https://doi.org/10.1016/j.cej.2007.03.031>
16. Sasirekha N., Basha S. J. S., Shanthi K.: Appl. Catal., B 2006, 62, 169. <https://doi.org/10.1016/j.apcatb.2005.07.009>
17. Tseng I.-H., Chang W.-C., Wu J. C. S.: Appl. Catal., B 2002, 37, 37. <https://doi.org/10.1016/S0926-3373(01)00322-8>
18. Usabharatana P., McMartin D., Veawab A., Tontiwachwuthikul P.: Ind. Eng. Chem. Res. 2006, 46, 2558. <https://doi.org/10.1021/ie0505763>
19. Anpo M., Yamashita H., Ichinashi Y., Ehara S.: J. Electroanal. Chem. 1995, 396, 21. <https://doi.org/10.1016/0022-0728(95)04141-A>
20. Kohno Y., Hayashi H., Takenaka S., Tanaka T., Funabiki T., Yoshida S.: J. Photochem. Photobiol., A 1999, 126, 117. <https://doi.org/10.1016/S1010-6030(99)00113-6>
21. Kaneco S., Shimizu Y., Ohta K., Mizuno T.: J. Photochem. Photobiol., A 1998, 115, 223. <https://doi.org/10.1016/S1010-6030(98)00274-3>
22. Adachi K., Ohta K., Mizuno M.: Solar Energy 1994, 53, 187. <https://doi.org/10.1016/0038-092X(94)90480-4>
23. Subrahmanyam M., Kaneco S., Alonso-Vante N.: Appl. Catal., B 1999, 23, 169. <https://doi.org/10.1016/S0926-3373(99)00079-X>
24. Tan S. S., Zou L., Hu E.: Catal. Today 2006, 115, 269. <https://doi.org/10.1016/j.cattod.2006.02.057>
25. Tan S. S., Zou L., Hu E.: Catal. Today 2008, 131, 125. <https://doi.org/10.1016/j.cattod.2007.10.011>