Collect. Czech. Chem. Commun.
2009, 74, 189-215
https://doi.org/10.1135/cccc2008180
Published online 2009-02-11 11:34:11
The quest for alternative routes to racemic and nonracemic azahelicene derivatives
Angelina Andronovaa,b, Florence Szydloa, Filip Teplýa, Miroslava Tobrmanováa, Amandine Volota, Irena G. Staráa,b,*, Ivo Starýa,b,*, Lubomír Rulíšeka,b, David Šamana, Josef Cvačkaa, Pavel Fiedlera and Pavel Vojtíšekc
a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 1 66 10 Prague 6, Czech Republic
c Department of Inorganic Chemistry, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
References
1. Pyridohelicenes are helicenes with a pyridine unit in their helical skeleton. They belong to a larger family of azahelicenes, which comprise also other nitrogen rings.
2. Sato K., Arai S. in: Cyclophane Chemistry for the 21st Century (H. Takemura, Ed.), p. 173. Research Signpost, Trivandrum 2002.
3a. Rajca A., Miyasaka M. in: Functional Organic Materials (T. J. J. Müller and U. H. F. Bunz, Eds), p. 547. Wiley-VCH, Weinheim 2007.
3b. Angew. Chem. Int. Ed. 2003, 42, 3986.
< A.: https://doi.org/10.1002/anie.200301667>
3c. Hopf H. in: Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, p. 323. Wiley-VCH, Weinheim 2000.
3d. Angew. Chem. Int. Ed. 2000, 39, 1921.
< T. J.: https://doi.org/10.1002/1521-3773(20000602)39:11<1921::AID-ANIE1921>3.0.CO;2-F>
4a. For recent examples, see: Chem. Eur. J. 2008, 14, 603.
< M. C., Enríquez Á., García-Cerrada S., Sanz-Cuesta M. J., Urbano A., Maseras F., Nonell-Canals A.: https://doi.org/10.1002/chem.200700762>
4b. Angew. Chem. Int. Ed. 2008, 47, 4870; and references therein.
< L., Yokota M., Kudo T., Umezaki S.: https://doi.org/10.1002/anie.200801396>
5. Org. Biomol. Chem. 2006, 4, 2518.
< S. K., Vachon M. P.: https://doi.org/10.1039/b603305a>
6a. For recent examples, see: Tetrahedron Lett. 2008, 49, 1455.
< F., El Abed R., Ben Hassine B.: https://doi.org/10.1016/j.tetlet.2008.01.005>
6b. Tetrahedron 2006, 62, 139.
< S., Bazzini C., Caronna T., Fontana F., Gambarotti C., Gangemi F., Longhi G., Mele A., Sora I. N., Panzeri W.: https://doi.org/10.1016/j.tet.2005.09.132>
6c. Eur. J. Org. Chem. 2005, 1247.
< C., Brovelli S., Caronna T., Gambarotti C., Giannone M., Macchi P., Meinardi F., Mele A., Panzeri W., Recupero F., Sironi A., Tubino R.: https://doi.org/10.1002/ejoc.200400648>
6d. Org. Lett. 2000, 2, 3169.
< E., McDonald R., Branda N. R.: https://doi.org/10.1021/ol006366y>
7a. Chem. Eur. J. 2008, 14, 5747.
< G., Faggi C., Gasparrini F., Ciogli A., Villani C., Stephens P. J., Devlin F. J., Menichetti S.: https://doi.org/10.1002/chem.200800705>
7b. Angew. Chem. Int. Ed. 2006, 45, 2242.
< D. C., Guy I. L., Nanson L.: https://doi.org/10.1002/anie.200504287>
7c. Tetrahedron Lett. 1994, 35, 8357.
< H. A., Diehm M., Krieger C.: https://doi.org/10.1016/S0040-4039(00)74406-6>
7d. Angew. Chem. Int. Ed. Engl. 1989, 28, 86.
< H. A., Zirnstein M. A., Krieger C.: https://doi.org/10.1002/anie.198900861>
8. Angew. Chem. Int. Ed. 2008, 47, 3188.
< J., Teplý F., Stará I. G., Tichý M., Šaman D., Císařová I., Vojtíšek P., Starý I.: https://doi.org/10.1002/anie.200705463>
9. J. Sep. Sci. 2008, 31, 2686.
< S., Míšek J., Stará I. G., Starý I., Kašička V.: https://doi.org/10.1002/jssc.200800227>
10. J. Mass Spectrom. 2007, 42, 1233.
< J., Schröder D., Míšek J., Stará I. G., Starý I.: https://doi.org/10.1002/jms.1256>
11. Tetrahedron Lett. 1996, 37, 5925.
< K., Kitahara Y., Suzuki H., Osuga H.: https://doi.org/10.1016/0040-4039(96)01278-6>
12. Angew. Chem. Int. Ed. 2008, 47, 9708.
< N., Sarangthem R. S., Captain B.: https://doi.org/10.1002/anie.200803338>
13a. J. Org. Chem. 2008, 73, 2074.
< P., Krausová Z., Teplý F., Stará I. G., Starý I., Rulíšek L., Šaman D., Císařová I.: https://doi.org/10.1021/jo701997p>
13b. Pure Appl. Chem. 2006, 78, 495.
< I., Stará I. G., Alexandrová Z., Sehnal P., Teplý F., Šaman D., Rulíšek L.: https://doi.org/10.1351/pac200678020495>
13c. Org. Lett. 2005, 7, 2547.
< I. G., Alexandrová Z., Teplý F., Sehnal P., Starý I., Šaman D., Buděšínský M., Cvačka J.: https://doi.org/10.1021/ol047311p>
14. The analogous Wittig olefination of 2-[(triisopropylsilyl)ethynyl]pyridine-3-carbaldehyde yielded 3-[(E)-2-iodoethenyl]-2-[(triisopropylsilyl)ethynyl]pyridine in 46% yield. The trans configuration of the double bond was indicated by a 15.1 Hz coupling constant of vicinal olefin protons.
15. Tetrahedron 2002, 58, 9007.
< F., Stará I. G., Starý I., Kollárovič A., Šaman D., Fiedler P.: https://doi.org/10.1016/S0040-4020(02)01154-7>
16a. Tetrahedron 2003, 59, 1571.
< C., Dohle W., Rodriguez A. L., Schmid B., Knochel P.: https://doi.org/10.1016/S0040-4020(03)00073-5>
16b. Chem. Ber. 1991, 124, 1223.
< P., Vögtle F.: https://doi.org/10.1002/cber.19911240540>
17a. Synthesis 2005, 2583.
W., Eller G. A., Holzer W.:
17b. J. Am. Chem. Soc. 1941, 63, 2243.
< F., Haskelberg L.: https://doi.org/10.1021/ja01853a062>
18. Tetrahedron 1996, 52, 11479.
< R., Loganathan V., Sridharan V., Stevenson P., Sukirthalingam S., Worakun T.: https://doi.org/10.1016/0040-4020(96)00638-2>
19. 2-Iodoaniline was acetylated as follows: acetyl chloride (1.0 equiv), pyridine (1.8 equiv), dichloromethane, 0 °C, 40 min, 98%. The resulting N-(2-iodophenyl)acetamide was alkylated as follows: sodium hydride (1.2 equiv), THF, 0 °C, 50 min, then propargyl bromide (1.2 equiv), r.t., overnight, 94%.
20a. Org. Prep. Proced. Int. 1996, 28, 127.
< D. L.: https://doi.org/10.1080/00304949609356516>
20b. Org. React. 1992, 42, 335.
D. L.:
20c. Synthesis 1981, 1.
< O.: https://doi.org/10.1055/s-1981-29317>
21a. Angew. Chem. Int. Ed. 2006, 45, 8025 (see Supporting Information).
< T. J., Churchill G. H., Wheelhouse K. M. P., Glossop P. A.: https://doi.org/10.1002/anie.200603240>
21b. Trost B. M., Rhee Y. H.: J. Am. Chem. Soc. 2002, 124, 2528 (see Supporting Information).
22. Tetrahedron 1998, 54, 11209.
< I. G., Starý I., Kollárovič A., Teplý F., Šaman D., Fiedler P.: https://doi.org/10.1016/S0040-4020(98)00655-3>
23. Collect. Czech. Chem. Commun. 2000, 65, 577.
< I. G., Kollárovič A., Teplý F., Starý I., Šaman D., Fiedler P.: https://doi.org/10.1135/cccc20000577>
24a. Collect. Czech. Chem. Commun. 2007, 72, 1499.
< Z., Sehnal P., Teplý F., Stará I. G., Starý I., Šaman D., Cvačka J., Fidler P.: https://doi.org/10.1135/cccc20071499>
24b. Collect. Czech. Chem. Commun. 2004, 69, 2193.
< Z., Stará I. G., Sehnal P., Teplý F., Starý I., Šaman D., Fiedler P.: https://doi.org/10.1135/cccc20042193>
25. J. Am. Chem. Soc. 1985, 107, 7487.
< J., Costello T., Wattley R.: https://doi.org/10.1021/ja00311a044>
26. J. Org. Chem. 2003, 68, 5193.
< F., Stará I. G., Starý I., Kollárovič A., Šaman D., Fiedler P., Vyskočil Š.: https://doi.org/10.1021/jo034369t>
27. J. Am. Chem. Soc. 2002, 124, 9175.
< F., Stará I. G., Starý I., Kollárovič A., Šaman D., Rulíšek L., Fiedler P.: https://doi.org/10.1021/ja0259584>
28. Jonas catalyst [(CpCo(C2H4)2] in THF at r.t., [Ni(CO)2(PPh3)2] in acetonitrile at 200 °C under microwave irradiation, [Ir(C8H14)2Cl]2/dppe in THF under reflux, Wilkinson catalyst [RhCl(PPh3)3] in toluene at 150 °C in a sealed tube, [Ru(C8H12)(C10H15)Cl] in 1,2-dichloroethane at r.t. In all cases we observed either no reaction or decomposition.
29. For a recent example of microwave enhanced cyclotrimerisation of sterically hindered alkynes, see: Tetrahedron 2008, 64, 5200.
< P., Číhalová S., Otmar M., Hocek M., Kotora M.: https://doi.org/10.1016/j.tet.2008.03.046>
30. The use of the more reactive Jonas catalyst [CpCo(C2H2)4] resulted in only 8% yield of (+)-(M,R,R)-33.
31. Helicity of (+)-(P,S)-34 and (+)-(P,S)-35 was also indicated in 1H NMR spectrum by a significant chemical shift of the methyl group at the stereogenic centre having S con- figuration (doublet at 0.55 or 0.65 ppm, respectively) as the corresponding signals of related helicene-like analogues appeared at 0.54–0.73 ppm for diastereomers of P helicity and at 0.92–1.67 ppm for diastereomers of M helicity (refs13a,13c).
32. Chem. Phys. Lett. 1989, 162, 165.
< R., Bär M., Häser M., Horn H., Kölmel C.: https://doi.org/10.1016/0009-2614(89)85118-8>
33. Phys. Rev. Lett. 1996, 77, 3865.
< J. P., Burke K., Ernzerhof M.: https://doi.org/10.1103/PhysRevLett.77.3865>
34a. J. Phys. Chem. 1994, 98, 11623.
< P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: https://doi.org/10.1021/j100096a001>
34b. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
34c. Phys. Rev. B 1988, 37, 785.
< C. T., Yang W. T., Parr R. G.: https://doi.org/10.1103/PhysRevB.37.785>
34d. Phys. Rev. A 1988, 38, 3098.
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
35. Chem. Phys. Lett. 1995, 240, 283.
< K., Treutler O., Öhm H., Häser M., Ahlrichs R.: https://doi.org/10.1016/0009-2614(95)00621-A>
36. Theor. Chim. Acta 1997, 97, 119.
< K., Weigen F., Treutler O., Ahlrichs R.: https://doi.org/10.1007/s002140050244>
37. Hehre W. J., Radom L., Schleyer P. v. R., Pople J. A.: Ab initio Molecular Orbital Theory. Wiley-Interscience, New York 1986.
38. J. Chem. Phys. 1994, 100, 5829.
< A., Huber C., Ahlrichs R.: https://doi.org/10.1063/1.467146>
39. J. Chem. Soc., Perkin Trans. 2 1993, 799.
< A., Schuurmann G.: https://doi.org/10.1039/p29930000799>
40. Phys. Chem. Chem. Phys. 2000, 2, 2187.
< A., Klamt A., Sattel D., Lohrenz J. C. W., Eckert F.: https://doi.org/10.1039/b000184h>
41. Jensen F.: Introduction to Computational Chemistry. John Wiley & Sons, New York 1999.
42. Synthesis 2000, 1009.
< B. L., Belanger D. B., O’Mahony D. J. R., Livinghouse T.: https://doi.org/10.1055/s-2000-6301>
43. Adv. Synth. Catal. 2002, 344, 678.
< T., Sato Y., Mori M.: https://doi.org/10.1002/1615-4169(200208)344:6/7<678::AID-ADSC678>3.0.CO;2-P>