Collect. Czech. Chem. Commun.
2009, 74, 1583-1597
https://doi.org/10.1135/cccc2009515
Published online 2009-12-17 14:13:20
Adsorption of 2-thiobarbituric acid at the electrochemical interface: Contrasted behaviours on mercury and gold
Thomas Doneux, Mustapha El Achab and Claudine Buess-Herman*
Chimie Analytique et Chimie des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, 2, CPI 255, 1050 Bruxelles, Belgium
References
1. Damaskin B. B., Petrii O. A., Batrakov V. V.: Adsorption of Organic Compounds on Electrodes. Plenum Press, New York–London 1971.
2. Damaskin B. B., Kazarinov V. E. in: Comprehensive Treatise of Electrochemistry (J. O’M. Bockris, B. E. Conway and E. Yeager, Eds), Vol. 1. Plenum Press, New York–London 1980.
3. Damaskin B. B., Petrii O. A. in: Encyclopedia of Electrochemistry (E. Gileadi and M. Urbakh, Eds), Vol. 1, p. 323. Wiley–VCH, Weinheim 2002.
4. Palecek E., Scheller F., Wang J. (Eds): Electrochemistry of Nucleic Acids and Proteins. Towards Sensors for Genomics and Proteomics. Elsevier, Amsterdam 2005.
5. J. Electroanal. Chem. 2004, 574, 167.
< D., Yang Y., Shepherd J. L., Stoodley R., Agak J., Stauffer V., Lathuilliere M., Akhtar A. S., Chung E.: https://doi.org/10.1016/j.jelechem.2003.11.002>
6. J. Electroanal. Chem. 2001, 504, 1.
< R., Aloisi G., Becucci L., Dolfi A., Moncelli M. R., Buoninsegui F. T.: https://doi.org/10.1016/S0022-0728(01)00382-5>
7. J. Electroanal. Chem. 2008, 622, 153.
< F., Gomes C., Figueiredo M., Costa R., Martins A., Pereira C. M.: https://doi.org/10.1016/j.jelechem.2008.05.014>
8. Lipkowki J., Stolberg L. in: Adsorption of Molecules at Metal Electrodes (J. Lipkowski and Ph. N. Ross, Eds), p. 171. VCH Publishers, Weinheim 1992.
9. J. Electroanal. Chem. 1998, 445, 7.
< S., Van Krieken M., Buess-Herman C., Hamelin A.: https://doi.org/10.1016/S0022-0728(97)00573-1>
10. Wandlowski Th. in: Encyclopedia of Electrochemistry (E. Gileadi and M. Urbakh, Eds), Vol. 1, p. 383. Wiley–VCH, Weinheim 2002.
11. Chem. Rev. 1996, 96, 1533.
< A.: https://doi.org/10.1021/cr9502357>
12. Chem Rev. 2005, 105, 1103.
< J. C., Estroff L. A., Kriebel J. K., Nuzzo R. G., Whitesides G. M.: https://doi.org/10.1021/cr0300789>
13. Inorg. Chem. 2002, 41, 4590.
< W. J., Jennings M. C., Puddephatt R. J.: https://doi.org/10.1021/ic020178h>
14. Langmuir 2005, 21, 4249.
< Z., Walther Th., Kleinermanns K.: https://doi.org/10.1021/la047272q>
15. Angew. Chem. Int. Ed. 1999, 38, 1108.
< V. M., Hirsch Th., Piletsky S. A., Wolfbeis O. S.: https://doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1108::AID-ANIE1108>3.0.CO;2-C>
16. Langmuir 2008, 24, 5146.
< E., Wörner M., Lages C., Cerdá M. F.: https://doi.org/10.1021/la7038812>
17. J. Electroanal. Chem. 1986, 207, 213.
< L., Richer J., Lipkowski J.: https://doi.org/10.1016/0022-0728(86)87073-5>
18. Langmuir 1994, 10, 2647.
< D.-F., Lipkowski J.: https://doi.org/10.1021/la00020a025>
19. Anal. Chim. Acta 1970, 51, 489.
< W. F., Svelha G., Zuman P.: https://doi.org/10.1016/S0003-2670(01)95745-9>
20. Anal. Chim. Acta 1970, 52, 129.
< W. F., Svelha G., Zuman P.: https://doi.org/10.1016/S0003-2670(01)80050-7>
21. Anal. Chim. Acta 1970, 51, 489.
< W. F., Zuman P., Svelha G.: https://doi.org/10.1016/S0003-2670(01)95745-9>
22. Anal. Chim. Acta 1975, 79, 69.
< C. A., Patriarche G. J., Vandenbalck J. L.: https://doi.org/10.1016/S0003-2670(00)89420-9>
23. J. Electroanal. Chem. 1983, 151, 101.
< A., Temizer A.: https://doi.org/10.1016/S0022-0728(83)80427-6>
24. Anal. Chim. Acta 1980, 121, 51.
< A., Vaneesorn Y., Davidson I. E., Smyth W. F.: https://doi.org/10.1016/S0003-2670(01)84399-3>
25. Bioelectrochem. Bioenerg. 1991, 26, 359.
< M.: https://doi.org/10.1016/0302-4598(91)80038-5>
26. J. Heterocycl. Chem. 1989, 26, 639.
< S., Millefiori A.: https://doi.org/10.1002/jhet.5570260324>
27. J. Phys. Chem. C 2007, 111, 3369.
< E., Cerdá M. F., Gancheff J. S., Torres J., Kremer C., Castiglioni J., Kieninger M., Ventura O. N.: https://doi.org/10.1021/jp0628176>
28. J. Electroanal. Chem. 1987, 226, 267.
< C., Gierst L., Gonze M., Silva F.: https://doi.org/10.1016/0022-0728(87)80050-5>
29. Hamelin A. in: Trends in Interfacial Electrochemistry (A. F. Silva, Ed.). Reidel, Dordrecht 1986.
30. J. Electroanal. Chem. 1986, 123, 1.
< C., Gierst L., Vanlaethem-Meurée N.: https://doi.org/10.1016/0368-1874(81)87087-6>
31. Langmuir 1996, 12, 5696.
< J. J., Kovacova Z., Sanchez M. D., Andreu R., Fawcett W. R.: https://doi.org/10.1021/la9601770>
32. J. Phys. Chem. B 2004, 108, 6422.
< T., Uosaki K.: https://doi.org/10.1021/jp049558+>
33. C. R. Acad. Sci. Paris, Ser. C 1967, 631.
M.-R., Martinez J.:
34. Collect. Czech. Chem. Commun. 1966, 31, 2105.
< V.: https://doi.org/10.1135/cccc19662105>
35. Buess-Herman in: Trends in Interfacial Electrochemistry (A. F. Silva, Ed.), p. 205. Reidel, Dordrecht 1986.
36. Chem. Rev. 1988, 88, 599.
< R.: https://doi.org/10.1021/cr00086a001>
37. Buess-Herman C., Baré S., Poelman M., Van Krieken M. in: Interfacial Electrochemistry (A. Wieckowski, Ed.), p. 427. M. Dekker, New York 1999.
38. Electrochim. Acta 1986, 31, 965.
< C., Franck C., Gierst L.: https://doi.org/10.1016/0013-4686(86)80010-X>
39. J. Chem. Soc., Faraday Trans. 1996, 92, 3940.
M., Buess-Herman C.:
40. J. Electroanal. Chem. 1993, 345, 413.
< T., de Levie R.: https://doi.org/10.1016/0022-0728(93)80493-2>
41. J. Electroanal. Chem. 1994, 366, 303.
< M., Buess-Herman C.: https://doi.org/10.1016/0022-0728(93)03040-V>