Collect. Czech. Chem. Commun.
2009, 74, 1675-1696
https://doi.org/10.1135/cccc2009108
Published online 2010-02-04 20:15:45
Polarographic and voltammetric study of genotoxic 2,7-dinitrofluoren-9-one and its determination using mercury electrodes
Vlastimil Vyskočil* and Jiří Barek
Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 2030/8, CZ-128 43 Prague 2, Czech Republic
References
1. J. Environ. Sci. Health, Part C 2002, 20, 149.
< H. T.: https://doi.org/10.1081/GNC-120016203>
2. J. Supercrit. Fluids 2007, 43, 81.
< J. A., Williams P. T.: https://doi.org/10.1016/j.supflu.2007.04.011>
3. J. Air Waste Manag. Assoc. 2003, 54, 1138.
< B., Sagebiel J., McDonald J. D., Whitney K., Lawson D. R.: https://doi.org/10.1080/10473289.2004.10470973>
4. Anal. Bioanal. Chem. 2006, 386, 883.
< B., Samy S.: https://doi.org/10.1007/s00216-006-0521-3>
5. Environ. Sci. Technol. 2007, 41, 8011.
< M., Stephanou E. G.: https://doi.org/10.1021/es071160e>
6. Chemosphere 1997, 35, 1681.
< H., Steinhart H.: https://doi.org/10.1016/S0045-6535(97)00249-X>
7. J. Appl. Microbiol. 1997, 83, 561.
< E., Bricelj M., Leskovsek H.: https://doi.org/10.1046/j.1365-2672.1997.00261.x>
8. Int. Biodeterior. Biodegrad. 2009, 63, 93.
< K., Rerngsamran P., Thaniyavarn S.: https://doi.org/10.1016/j.ibiod.2008.06.006>
9. Science 1978, 202, 515.
< J. N., Van Cauwenberghe K. A., Grosjean D., Schmid J. P., Fitz D. R., Belser W. L., Knudson G. B., Hynds P. M.: https://doi.org/10.1126/science.705341>
10. Mutat. Res. 1983, 114, 217.
< H. S., Mermelstein R.: https://doi.org/10.1016/0165-1110(83)90034-9>
11. Environ. Health Perspect. 1983, 47, 65.
< D.: https://doi.org/10.2307/3429500>
12. Mizunoya K., Matsumoto S., Tomii H., Kawamoto M., Wada Y.: U.S. 4,336,080 (1982).
13. Synth. Met. 1993, 58, 73.
< A., Roblesmartinez J. G., Lezamaramirez R., Juarezposadas J., Zehe A., Sorianogarcia M., Toscano R. A.: https://doi.org/10.1016/0379-6779(93)91119-M>
14. Spectrochim. Acta, Part A 2004, 60, 1421.
< M. S., Gehlen M. H.: https://doi.org/10.1016/j.saa.2003.08.006>
15. Synth. Met. 2009, 159, 45.
< E. W., Galan-Mascaros J. R., Dunbara K. R.: https://doi.org/10.1016/j.synthmet.2008.07.017>
16. Ito Y., Terao H., Ono K., Aratani S., Isogai M., Kakuta A.: U.S. 5,176,854 (1993).
17. Mol. Cryst. Liq. Cryst. 2003, 406, 253.
< S., Shiozaki H., Sakurai Y., Hioki A., Kimoto M., Araoka F., Takezoe H.: https://doi.org/10.1080/744818987>
18. Opt. Mater. 2004, 27, 91.
< F., Caruso U., Centore R., De Maria A., Fusco M., Panunzi B., Roviello A., Tuzi A.: https://doi.org/10.1016/j.optmat.2004.02.011>
19. Polymer 2008, 49, 2632.
< R. J., Schroeder J. L., Cole S. M., Belcher M. E., Cole P. J., Lenhart J. L.: https://doi.org/10.1016/j.polymer.2008.03.048>
20. Polymer 2008, 49, 5541.
< R. J., Cole S. M., Belcher M. E., Schroeder J. L., Cole P. J., Lenhart O. L.: https://doi.org/10.1016/j.polymer.2008.08.067>
21. Polymer 2008, 49, 5549.
< R. J., Cole S. M., Belcher M. E., Schroeder J. L., Cole P. J., Lenhart J. L.: https://doi.org/10.1016/j.polymer.2008.08.069>
22. J. Electroanal. Chem. 1999, 477, 79.
< N., Kuhn A.: https://doi.org/10.1016/S0022-0728(99)00393-9>
23. Anal. Chim. Acta 2003, 513, 67.
< A., Compagnone D., Palleschi G.: https://doi.org/10.1016/j.aca.2003.09.030>
24. Anal. Chem. 1986, 58, 1060.
< D., Lewtas J.: https://doi.org/10.1021/ac00124a001>
25. Appl. Environ. Microbiol. 1994, 60, 4263.
F., Selby A. L., Newton R. K., Cerniglia C. E.:
26. Mutat. Res.-Rev. Mutat. Res. 2007, 636, 4.
< C. H., Hewitt L. M.: https://doi.org/10.1016/j.mrrev.2006.05.001>
27. J. Chromatogr., A 1996, 728, 359.
< L., Careri M., Mangia A., Manini P., Maspero M.: https://doi.org/10.1016/0021-9673(95)01040-8>
28. Vyskočil V.: M.S. Thesis. Charles University, Prague 2005.
29. Curr. Anal. Chem. 2008, 4, 242.
< J., Pecková K., Vyskočil V.: https://doi.org/10.2174/157341108784911325>
30. Vyskočil V., Barek J., Jiránek I., Zima J. in: Progress on Drinking Water Research (M. H. Lefebvre and M. M. Roux, Eds), p. 171. Nova Science Publishers, New York 2009.
31. Crit. Rev. Anal. Chem. 2009, 39, 173.
< V., Barek J.: https://doi.org/10.1080/10408340903011820>
32. J. Electrochem. Soc. 1960, 107, 616.
< J. T., Day R. A.: https://doi.org/10.1149/1.2427786>
33. Vyskočil V., Jiránek I., Barek J., Pecková K., Zima J. in: Sensing in Electroanalysis (K. Vytřas and K. Kalcher, Eds), Vol. 2, p. 105. University of Pardubice, Pardubice 2007.
34. Bard A. J., Faulkner L. R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York 2001.
35. Rajeshwar K., Ibanez J. G.: Environmental Electrochemistry: Fundamentals and Applications in Pollution Sensors and Abatement. Academic Press, London 1997.
36. Wang J.: Analytical Electrochemistry. John Wiley & Sons, Hoboken 2006.
37. Harvey D. in: Modern Analytical Chemistry (K. T. Kane, Ed.), p. 96. McGraw–Hill, Toronto 2000.
38. Collect. Czech. Chem. Commun. 1993, 58, 41.
< P.: https://doi.org/10.1135/cccc19930041>
39. Lund H. in: Organic Electrochemistry (H. Lund and O. Hammerich, Eds), p. 379. Marcel Dekker, New York 2001.