Collect. Czech. Chem. Commun.
2009, 74, 299-312
https://doi.org/10.1135/cccc2008169
Published online 2009-02-14 09:24:13
Chiral recognition in bicyclic guanidines
Daniel H. O’ Donovana, Isabel Rozasa, Fernando Blancob, Ibon Alkortab,* and José Elguerob
a School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
b Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006-Madrid, Spain
References
1. Polym. J. 2006, 38, 432.
< Y., Ousaka N., Miwa Y.: https://doi.org/10.1295/polymj.38.432>
2. Nature 2000, 408, 668.
< A. D., Koshland D. E.: https://doi.org/10.1038/35047170>
3a. Eur. J. Inorg. Chem. 2007, 324.
< O., Alkorta I., Elguero J., Sundberg M. R., Valo J.: https://doi.org/10.1002/ejic.200600938>
3b. J. Phys. Chem. A 2007, 111, 1096.
< I., Elguero J., Zborowski K.: https://doi.org/10.1021/jp0669916>
3c. Pol. J. Chem. 2007, 81, 621; and references therein.
K., Alkorta I., Elguero J.:
4. Helv. Chim. Acta 1988, 71, 685.
< A., Galán A., de Mendoza J., Salmerón A., Lehn J.-M.: https://doi.org/10.1002/hlca.19880710402>
5. Tetrahedron 2002, 58, 2951.
< M., Alcázar V., Prados P., de Mendoza J.: https://doi.org/10.1016/S0040-4020(02)00195-3>
6. Chem. Soc. Rev. 2007, 36, 198.
< P., Segura M., Pérez-Fernández R., de Menoza J.: https://doi.org/10.1039/b603089k>
7. Arch. Biochem. Biophys. 2003, 414, 1.
< D.: https://doi.org/10.1016/S0003-9861(03)00169-3>
8. Alkorta I., Elguero J.: Ann. Eur. Acad. Sci. 2009 in press.
9. Org. Lett. 1999, 1, 157.
< E. J., Grogan M. J.: https://doi.org/10.1021/ol990623l>
10. J. Am. Chem. Soc. 2006, 128, 13692.
< J., Nguyen T. T, Goh Y.-P., Ye W., Fu X., Xu J., Tan C.-H.: https://doi.org/10.1021/ja064636n>
11. Angew. Chem. Int. Ed. 2008, 47, 5641; and references therein.
< D., Lin S., Chittimalla S. K., Fu X., Tan C.-H.: https://doi.org/10.1002/anie.200801378>
12. J. Chem. Soc., Chem. Commun. 1992, 629.
< E., Wynberg H., van Bolhuis F.: https://doi.org/10.1039/c39920000629>
13. Tetrahedron: Asymmetry 1995, 11, 2829.
< A. P., Dempsey K. J.: https://doi.org/10.1016/0957-4166(95)00374-X>
14. J. Am. Chem. Soc. 1989, 111, 4994.
< A., Galan A., Lehn J.-M., de Mendoza J.: https://doi.org/10.1021/ja00195a071>
15. Chem. Asian J. 2007, 2, 1150.
< Y., Takemura N., Takada K., Takagi R., Iguchi T., Nagasawa K.: https://doi.org/10.1002/asia.200700145>
16. Chem. Eur. J. 2000, 6, 3228.
< F., Di Stefano S., Magrans J. O., Prados P., Mandolini L., de Mendoza J.: https://doi.org/10.1002/1521-3765(20000901)6:17<3228::AID-CHEM3228>3.0.CO;2-P>
17. J. Org. Chem. 2003, 68, 8786.
< J., Jiang W.-Y., Han K.-L., He G.-Z., Li C.: https://doi.org/10.1021/jo034891f>
18. J. Am. Chem. Soc. 2006, 128, 3543.
< R., Houk K. N.: https://doi.org/10.1021/ja0525859>
19. Angew. Chem. Int. Ed. 2007, 46, 4507.
< I., Rios R., Vesely J., Hammar P., Eriksson L., Himo F., Córdova A.: https://doi.org/10.1002/anie.200700916>
20. J. Chem. Phys. 1993, 98, 1372.
< A. D.: https://doi.org/10.1063/1.464304>
21. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03. Gaussian, Inc., Wallingford, CT 2003.
22. J. Chem. Phys. 2002, 117, 6463.
< I., Elguero J.: https://doi.org/10.1063/1.1504710>
23. J. Org. Chem. 2003, 68, 7485.
< O., Alkorta I., Elguero J.: https://doi.org/10.1021/jo035026y>
24. J. Phys. Chem. A 2005, 109, 3262.
O., Alkorta I., Elguero J.:
25. J. Phys. Chem. A 2006, 110, 2259.
< I., Elguero J.: https://doi.org/10.1021/jp056886g>
26. J. Comput. Chem. 1995, 16, 20.
J., Coitino E. L., Cammi R.:
27. J. Comput. Chem. 1995, 16, 1449.
J., Cammi R.:
28. Bader R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford 1994.
29. Chem. Rev. 1988, 88, 899.
< A. E., Curtiss L. A., Weinhold F.: https://doi.org/10.1021/cr00088a005>
30. J. Comput. Chem. 1982, 3, 317.
< F. W., Bader R. F. W., Tang T. H.: https://doi.org/10.1002/jcc.540030306>
31. Popelier P. L. A., with a contribution from Bone R. G. A. (UMIST, England, EU): MORPHY98, A Topological Analysis Program. 1999.
32. Chem. Soc. Rev. 1998, 27, 163.
< I., Rozas I., Elguero J.: https://doi.org/10.1039/a827163z>
33. J. Phys. Chem. A 2001, 105, 10739.
< S. J.: https://doi.org/10.1021/jp011819h>
34. J. Struct. Chem. 1998, 9, 243.
< I., Rozas I., Elguero J.: https://doi.org/10.1023/A:1022424228462>
35. J. Mol. Struct. (THEOCHEM) 2000, 496, 131.
< I., Barrios L., Rozas I., Elguero J.: https://doi.org/10.1016/S0166-1280(99)00177-3>
36. J. Chem. Phys. 2002, 117, 5529.
< E., Alkorta I., Elguero J., Molins E.: https://doi.org/10.1063/1.1501133>
37. J. Phys. Chem. B 2004, 108, 3335.
< I., Alkorta I., Elguero J.: https://doi.org/10.1021/jp036901m>
38. Org. Biomol. Chem. 2005, 3, 366.
< I., Alkorta I., Elguero J.: https://doi.org/10.1039/b415768k>
39. Phys. Chem. Chem. Phys. 2007, 9, 2782.
< I.: https://doi.org/10.1039/b618225a>