Collect. Czech. Chem. Commun.
2009, 74, 857-886
https://doi.org/10.1135/cccc2008218
Published online 2009-05-06 11:51:33
Recent advances in the design, synthesis and study of covalent conjugated oligomer–C60 ensembles
Raúl Blanco Bazaco, José L. Segura* and Carlos Seoane*
Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
References
1. For a comprehensive treatment of the semiconductor device physics of conjugated polymers, see: N. C., Friend R. H.: Solid State Phys. 1995, 49, 1.
<https://doi.org/10.1016/S0081-1947(08)60297-0>
2. J. R., Barbara P. F.: Acc. Chem. Res. 1999, 32, 191.
<https://doi.org/10.1021/ar990033n>
3. C. J., Sariciftci N. S., Hummelen J. C.: Adv. Funct. Mater. 2001, 11, 15.
<https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A>
4. J.: Curr. Opin. Solid State Mater. Sci. 2002, 6, 87.
<https://doi.org/10.1016/S1359-0286(02)00006-2>
5. N. S.: Mater. Today 2004, 7, 36.
<https://doi.org/10.1016/S1369-7021(04)00400-6>
6. N. S., Smilowitz L., Heeger A. J., Wudl F.: Science 1992, 258, 1474.
<https://doi.org/10.1126/science.258.5087.1474>
7. G., Gao J., Hummelen J. C., Wudl F., Heeger A. J.: Science 1995, 270, 1789.
<https://doi.org/10.1126/science.270.5243.1789>
8. S. A., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T., Hummelen J. C.: Appl. Phys. Lett. 2001, 78, 841.
<https://doi.org/10.1063/1.1345834>
9a. A., Rispens M. T., van Duren J. K. J., Hummelen J. C., Janssen R. A. J.: J. Am. Chem. Soc. 2001, 123, 6714.
<https://doi.org/10.1021/ja015614y>
9b. A., Zerza G., Neugebauer H., Maggini M., Bucella S., Menna E., Svensson M., Andersson M. R., Brabec C. J., Sariciftci N. S.: J. Phys. Chem. A 2002, 106, 70.
<https://doi.org/10.1021/jp013077y>
9c. F., Svensson M., Andersson M. R., Maggini M., Bucella S., Menna E., Inganäs O.: Adv. Mater. 2001, 13, 1871.
<https://doi.org/10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3>
10. A., Sariciftci N. S.: J. Mater. Chem. 2002, 12, 1931.
<https://doi.org/10.1039/b201558g>
11. Müllen K., Wegner G. (Eds): Electronic Materials: The Oligomer Approach. Wiley-VCH, Weinheim 1998.
12. K., Wegner G.: Adv. Mater. 1998, 10, 433.
<https://doi.org/10.1002/adma.840100603>
13. J. L., Martín N.: J. Mater. Chem. 2000, 10, 2403.
<https://doi.org/10.1039/b004407p>
14. R. A. J., Christiaans M. P. T., Pakbaz K., Moses D., Hummelen J. C., Sariciftci N. S.: J. Chem. Phys. 1995, 102, 2628.
<https://doi.org/10.1063/1.468694>
15a. L., Krasnikov V. V., Stalmach U., Hadziioannou G.: Adv. Mater. 1999, 11, 1515.
<https://doi.org/10.1002/(SICI)1521-4095(199912)11:18<1515::AID-ADMA1515>3.0.CO;2-A>
15b. S. C., Malliaras G. C., Brouwer H. J., Esselink F. J., Krasnikov V. V., van Hutten P. F., Wildeman J., Jonkman H. T., Sawatzky G. A., Hadziioannou G.: Synth. Met. 1997, 84, 971.
<https://doi.org/10.1016/S0379-6779(96)04235-X>
15c. L., Maniero A. L., Ruzzi M., Prato M., Da Ros T., Barbarella G., Zambianchi V.: Chem. Commun. 1999, 429.
<https://doi.org/10.1039/a809036j>
15d. G.: Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 2000, 41, 797.
15e. A. Y., Matt G., Sitter H., Brabec C. J., Badt C., Neugebauer H., Sariciftci N. S.: Synth. Met. 2001, 116, 235.
<https://doi.org/10.1016/S0379-6779(00)00459-8>
16. J. L., Martín N., Guldi D. M.: Chem. Soc. Rev. 2005, 34, 31.
<https://doi.org/10.1039/b402417f>
17. T. M., Gégout A., Nierengarten J.-F.: Chem. Commun. 2007, 109.
<https://doi.org/10.1039/b609383c>
18a. H. M.: J. Phys. Chem. 1961, 35, 508.
<https://doi.org/10.1063/1.1731961>
18b. P. F., Meyer T. J., Ratner M. A.: J. Phys. Chem. 1996, 100, 13148.
<https://doi.org/10.1021/jp9605663>
19. G. B.: Acc. Chem. Res. 2000, 33, 253.
<https://doi.org/10.1021/ar980059z>
20. H. B., Winkler J. R.: Annu. Rev. Biochem. 1996, 65, 537.
<https://doi.org/10.1146/annurev.bi.65.070196.002541>
21. T. S., Blanchard-Desce M., Dvolaitzky M., Lehn J.-M., Malthête J.: Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 5355.
<https://doi.org/10.1073/pnas.83.15.5355>
22a. R. E., Danliker P. J., Barton J. K.: Angew. Chem. Int. Ed. 1997, 36, 2715.
22b. T. J., Kayyem J. F.: Angew. Chem. Int. Ed. 1995, 34, 352.
<https://doi.org/10.1002/anie.199503521>
23a. Jortner J., Ratner M. (Eds): Molecular Electronics. Blackwell, Oxford 1997.
23b. Petty M. C., Bryce M. R., Bloor D. (Eds): An Introduction to Molecular Electronics. Oxford University Press, New York 1995.
24a. W. B., Svec W. A., Ratner M. A., Wasielewski M. R.: Nature 1998, 396, 60.
<https://doi.org/10.1038/25090>
24b. W. B., Ratner M. A., Wasielewski M. R.: J. Am. Chem. Soc. 2001, 123, 7877.
<https://doi.org/10.1021/ja010330z>
25. A. M., Meskers S. C. J., Van Hal P. A., Knol J., Hummelen J. C., Janssen R. A. J.: J. Phys. Chem. A 2003, 107, 9269.
<https://doi.org/10.1021/jp035549+>
26. F., Segura J. L., Martín N., Guldi D. M.: J. Am. Chem. Soc. 2004, 126, 5340.
<https://doi.org/10.1021/ja0318333>
27. F., Segura J. L., Martín N., Ramey J., Guldi D. M.: Chem. Eur. J. 2005, 11, 4819.
<https://doi.org/10.1002/chem.200500073>
28. N., Sánchez L., Herranz M. A., Illescas B., Guldi D. M.: Acc. Chem. Res. 2007, 40, 1015.
<https://doi.org/10.1021/ar700026t>
29. G., Giacalone F., Segura J. L., Martín N., Guldi D. M.: Chem. Eur. J. 2005, 11, 1267.
<https://doi.org/10.1002/chem.200400604>
30. T. M., Rio Y., Listrti A., Delavaux-Nicot B., Holler M., Marchioni F., Ceroni P., Armaroli N., Nierengarten J.-F.: New J. Chem. 2008, 32, 54.
<https://doi.org/10.1039/b711030h>
31. J., Takimiya K., Aso Y., Otsubo T., Fujitsuka M., Ito O.: Org. Lett. 2002, 4, 309.
<https://doi.org/10.1021/ol016511n>
32. J. S., Schreiman I. C., Hsu H. C., Kearney P. C., Marguerettaz A. M.: J. Org. Chem. 1987, 52, 827.
<https://doi.org/10.1021/jo00381a022>
33a. B., Pramod K., Eaton P., Closs G., Miller J. R.: J. Phys. Chem. 1993, 97, 13042.
<https://doi.org/10.1021/j100152a002>
33b. J., Li H.-L., Zhang Y.: J. Phys. Chem. 1993, 97, 11497.
<https://doi.org/10.1021/j100146a025>
33c. M. T., Rowe G. K., Richardson J. N., Tender L. M., Terrill R. H., Murray R. W.: J. Am. Chem. Soc. 1995, 117, 2896.
<https://doi.org/10.1021/ja00115a022>
34a. F., Flamigni L., Guardigli M., Juris A., Beley M., Chodorowski-Kimmens S., Collins J.-P., Sauvage J.-P.: Inorg. Chem. 1996, 35, 136.
<https://doi.org/10.1021/ic9503085>
34b. B., Belser P., De Cola L., Sabbioni E., Balzani V.: J. Am. Chem. Soc. 1999, 121, 4207.
<https://doi.org/10.1021/ja990044b>
35a. A. C., Goulle V., Harriman A., Lehn J.-M., Marczinke B.: J. Phys. Chem. 1994, 98, 7798.
<https://doi.org/10.1021/j100083a009>
35b. A., Tanabe N., Kawabata S., Yamazaki I., Nishimura Y.: J. Org. Chem. 1995, 60, 7177.
<https://doi.org/10.1021/jo00127a024>
36a. V., Harriman A., Ziessel R.: Angew. Chem., Int. Ed. Engl. 1995, 34, 1100.
<https://doi.org/10.1002/anie.199511001>
36b. V., Harriman A., Ziessel R.: Angew. Chem., Int. Ed. Engl. 1995, 34, 2705.
<https://doi.org/10.1002/anie.199527051>
37. M., Song P., Chen Y., Ma F.: Chem. Phys. Lett. 2005, 416, 94.
<https://doi.org/10.1016/j.cplett.2005.09.067>
38. T., Fujitsuka M., Araki Y., Ito O., Ikemoto J., Takimiya K., Aso Y., Otsubo T.: J. Phys. Chem. 2004, 108, 10700.
<https://doi.org/10.1021/jp049122u>
39. T., Ikemoto J., Fujitsuka M., Araki Y., Ito O., Takimiya K., Aso Y., Otsubo T.: J. Phys. Chem. 2005, 109, 14365.
<https://doi.org/10.1021/jp044316v>
40. H., Takimiya K., Otsubo T., Aso Y., Nakamura T., Araki Y., Ito O.: J. Org. Chem. 2004, 69, 7183.
<https://doi.org/10.1021/jo049137o>
41. T., Kanato H., Araki Y., Ito O., Takimiya K., Otsubo T., Aso Y.: J. Phys. Chem. 2006, 110, 3471.
<https://doi.org/10.1021/jp056436o>
42. H., Narutaki M., Takimiya K., Otsubo T., Harima Y.: Chem. Lett. 2006, 35, 668.
<https://doi.org/10.1246/cl.2006.668>
43. N., Yamada K., Takimiya K., Aso Y., Otsubo T., Harima Y.: Chem. Lett. 2003, 32, 404.
<https://doi.org/10.1246/cl.2003.404>
44. Y., Kawabata T., Kaneda T., Aso Y.: Chem. Lett. 2006, 35, 1366.
<https://doi.org/10.1246/cl.2006.1366>
45. X., Nagahara L. A., Rawlet A. M., Tao N.: J. Am. Chem. Soc. 2005, 127, 9235.
<https://doi.org/10.1021/ja050381m>
46. M. U., Dahlstedt E., Blades H. E., Wilson C. J., Frampton M. J., Anderson H. L., Albisson B.: J. Am. Chem. Soc. 2007, 129, 4291.
<https://doi.org/10.1021/ja067447d>
47. S., Giacalone F., Haque S. A., Palomares E., Martín N., Durrant J. R.: Chem. Eur. J. 2005, 11, 7440.
<https://doi.org/10.1002/chem.200401312>
48a. E. H. A., Van Hal P. A., Dhanabalan A., Meskers S. C. J., Hummelen J. C., Janssen R. A. J.: J. Phys. Chem. A 2003, 107, 6218.
<https://doi.org/10.1021/jp035402i>
48b. N., Takimiya T., Otsubo T., Harima Y., Aso Y.: Chem. Lett. 2004, 33, 654.
<https://doi.org/10.1246/cl.2004.654>
49. D. M., Luo C., Swartz A., Gómez R., Segura J. L., Martín N.: J. Phys. Chem. A 2004, 108, 455.
<https://doi.org/10.1021/jp034186a>
50a. S.-G., Rivera J., Liu H., Raimundo J.-M., Roncali J., Gorgues A., Echegoyen L.: J. Org. Chem. 1999, 64, 4884.
<https://doi.org/10.1021/jo990287m>
50b. C., Blanchard P., Rondeau D., Delaunay J., Roncali J.: Adv. Mater. 2002, 14, 283.
<https://doi.org/10.1002/1521-4095(20020219)14:4<283::AID-ADMA283>3.0.CO;2-M>
51a. J.-F., Gu T.: Helv. Chim. Acta 2004, 87, 2948.
<https://doi.org/10.1002/hlca.200490266>
51b. C., Insuasty B., Seoane C., Martín N., Ramey J., Rahman G. M. A., Guldi D. M.: J. Mater. Chem. 2005, 15, 124.
<https://doi.org/10.1039/b412110d>
52. C., Bryce M. R., Wielopolski M., Atienza-Castellanos C., Guldi D. M., Filippone S., Martín N.: J. Org. Chem. 2007, 72, 6662.
<https://doi.org/10.1021/jo070686e>
53. J. L., Martín N.: Chem. Soc. Rev. 2000, 29, 13.
<https://doi.org/10.1039/a903716k>
54. N., Wang Li, Thompson D. W., Zhao Y.: Tetrahedron Lett. 2007, 48, 3563.
<https://doi.org/10.1016/j.tetlet.2007.03.092>
55. Y., Zhao Y., Cheng L., Tour J. M.: Org. Lett. 2004, 6, 2129.
<https://doi.org/10.1021/ol049447t>
56. Y., Shirai Y., Slepkov A. D., Cheng L., Alemany L. B., Sasaki T., Hegmann F. A., Tour J. M.: Chem. Eur. J. 2005, 11, 3643.
<https://doi.org/10.1002/chem.200401198>
57. A. D., Hegmann F. A., Zhao Y., Tykwinsky R. R., Kamada K.: J. Chem. Phys. 2002, 116, 3834.
<https://doi.org/10.1063/1.1447908>
58. Y., Osgood A. J., Zhao Y., Kelly K. F., Tour J. M.: Nano Lett. 2005, 5, 2330.
<https://doi.org/10.1021/nl051915k>
59. Y., Morin J.-F., Sasaki T., Guerrero J. M., Tour J. M.: Chem. Soc. Rev. 2006, 35, 1043.
<https://doi.org/10.1039/b514700j>
60. J. M.: J. Org. Chem. 2007, 72, 7477.
<https://doi.org/10.1021/jo070543s>
61. C. M., Fernández G., Sánchez L., Martín N., Dantas I. S., Wienk M. M., Janssen R. A. J., Rahman G. M. A., Guldi D. M.: Chem. Commun. 2006, 514.
<https://doi.org/10.1039/b510234k>
62. J. L., Hahn U., Nierengarten J.-F.: Tetrahedron Lett. 2006, 47, 3715.
<https://doi.org/10.1016/j.tetlet.2006.03.142>
63. A., Holler M., Figueira-Duarte T. M., Nierengarten J.-F.: Eur. J. Org. Chem. 2008, 3627.
<https://doi.org/10.1002/ejoc.200800312>
64. M., Accorsi G., Masson P., Armaroli N., Nierengarten J.-F.: Chem. Eur. J. 2004, 10, 5076.
<https://doi.org/10.1002/chem.200400157>
65. U., Gégout A., Duhayon C., Coppel Y., Saquet A., Nierengarten J.-F.: Chem. Commun. 2007, 516.
<https://doi.org/10.1039/b614009b>
66. U., Maisonhaute E., Amatore C., Nierengarten J.-F.: Angew. Chem. Int. Ed. 2007, 46, 951.
<https://doi.org/10.1002/anie.200603765>
67. J.-L., Duan X.-F., Jiang B., Gan L.-B., Pei J., He C., Li Y.-F.: J. Org. Chem. 2006, 71, 4400.
<https://doi.org/10.1021/jo060097t>
68. J., Wang J.-L., Cao X.-Y., Zhou X.-H., Zhang W.-B.: J. Am. Chem. Soc. 2003, 125, 9944.
<https://doi.org/10.1021/ja0361650>
69. N., Takimiya K., Otsubo T., Harima Y., Aso Y.: Synth. Met. 2005, 152, 125.
<https://doi.org/10.1016/j.synthmet.2005.07.238>
70. G., Sánchez L., Veldman D., Wienk M. M., Atienza C., Guldi D. M., Janssen R. A. J., Martín N.: J. Org. Chem. 2008, 73, 3189.
<https://doi.org/10.1021/jo702740d>

