Collect. Czech. Chem. Commun.
2009, 74, 901-925
https://doi.org/10.1135/cccc2009017
Published online 2009-05-19 11:33:09
Synthesis of Aib-containing cyclopeptides via the ‘azirine/oxazolone method’
Ingeborg Dannecker-Dörig, Anthony Linden and Heinz Heimgartner*
Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
References
1. J. Ind. Microbiol. Biotechnol. 1996, 16, 134.
R. E.:
2. Davies J. S.: Cyclic Polymers (2nd ed.), pp. 85–124. Kluwer Academic Publishers, Dordrecht 2000.
3. Recent Res. Dev. Bacteriol. 2003, 1, 151.
R. A.:
4. Curr. Org. Chem. 2006, 10, 2075.
< A. B., Battista M. E., Vitale A. E.: https://doi.org/10.2174/138527206778742669>
5. J. Pept. Sci. 2006, 12, 569.
< B., Cebrat M., Zabrocki J., Siemion I. Z.: https://doi.org/10.1002/psc.779>
6. Amino Acids Pept. Proteins 2006, 35, 129.
< B., Toth G., Varadi G.: https://doi.org/10.1039/9781847555250-00129>
7. Biopolymers 2008, 90, 51.
< D. C., Wang C. K. L., Wilson J. A., Gustafson K. R., Craik D. J.: https://doi.org/10.1002/bip.20886>
8. Radiol. Oncol. 2008, 42, 102.
< B., Elersek T., Grach-Pogrebinsky O., Carmeli S., Sever N., Lah T. T.: https://doi.org/10.2478/v10019-008-0001-9>
9. Tetrahedron 2009, 65, 275.
< A., Mayer C., Quentin D., Zhang Y., Blond A., Bodo B.: https://doi.org/10.1016/j.tet.2008.10.055>
10. J. Nat. Prod. 2008, 71, 1365.
< P.-H., Hsieh P.-W., Yang Y.-L., Hua K.-F., Chang F.-R., Shiea J., Wu S.-H., Wu Y.-C.: https://doi.org/10.1021/np8001282>
11. J. Nat. Prod. 2008, 71, 1336.
< M., Dal Piaz F., Temraz A., Bader A., De Tommasi N., Braca A.: https://doi.org/10.1021/np700735a>
12. Helv. Chim. Acta 2008, 91, 1106.
< S., Payen-Fattaccioli L., Beney C., Cégiéla P., Bayet C., Cartier G., Noungoué-Tchamo D., Tsamo E., Mariotte A.-M., Dijoux-Franca M.-G.: https://doi.org/10.1002/hlca.200890118>
13. J. Antibiotics 2008, 61, 18.
< B., Böhlendorf B., Reichenbach H., Höfle G.: https://doi.org/10.1038/ja.2008.104>
14. Arch. Pharm. Res. 2008, 31, 579.
< K. H., Choi S. U., Park K. M., Seok S. J., Lee K. R.: https://doi.org/10.1007/s12272-001-1196-3>
15. Chem. Rev. 1995, 95, 2115.
< P.: https://doi.org/10.1021/cr00038a013>
16. Chem. Rev. 1995, 95, 2135.
A. V., Gurjar M. K., Reddy K. L., Rao A. S.:
17. Curr. Org. Chem. 2001, 5, 417.
< D., Aube J.: https://doi.org/10.2174/1385272013375517>
18. J. Pept. Sci. 2003, 9, 471.
< J. S.: https://doi.org/10.1002/psc.491>
19. Chem. Rev. 2005, 105, 4441.
< Y., Shioiri T.: https://doi.org/10.1021/cr0406312>
20. Youji Huaxue 2008, 28, 549; Chem. Abstr. 2008, 150, 77911.
D.-X., Han X., Gong X., Feng H.-H.:
21. J. Am. Chem. Soc. 2008, 130, 4914.
< E. A., Novick R. P., Muir T. W.: https://doi.org/10.1021/ja711126e>
22. J. Med. Chem. 2008, 51, 1771.
< F., Burreddu P., Rassu G., Auzzas L., Battistini L., Curti C., Sartori A., Nicastro G., Menchi G., Cini N., Bottonocetti A., Raspanti S., Casiraghi G.: https://doi.org/10.1021/jm701214z>
23. Tetrahedron 2008, 64, 1853.
< G., Drosdow E., Oeser T., Rominger F.: https://doi.org/10.1016/j.tet.2007.11.098>
24. J. Am. Chem. Soc. 2008, 130, 2351.
< P., Evans C. D., Wu Y., Cao B., Hamel E., Joulli M. M.: https://doi.org/10.1021/ja710363p>
25. Russ. J. Bioorg. Chem. 2008, 34, 550.
< A. A., Sumbatyan N. V., Lezinna V. P., Akparov V. K., Korshunova G. A., Gudasheva T. A.: https://doi.org/10.1134/S106816200805004X>
26. Eur. J. Org. Chem. 2008, 14, 2375.
< A., Haberhauer G.: https://doi.org/10.1002/ejoc.200701153>
27. Org. Biomol. Chem. 2008, 6, 1994.
< J., Bertram A., Pattenden G.: https://doi.org/10.1039/b802477d>
28. Bioorg. Med. Chem. 2008, 16, 5778.
< G. W., Askew K., Schwemlein S.: https://doi.org/10.1016/j.bmc.2008.03.058>
29. Curr. Org. Chem. 2008, 12, 1502.
< S., Li Z., Ding K., Roller P. P.: https://doi.org/10.2174/138527208786241501>
30. J. Pept. Res. 1997, 49, 67.
< U., Langner J.: https://doi.org/10.1111/j.1399-3011.1997.tb01122.x>
31. Helv. Chim. Acta 2004, 87, 3056.
< T., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200490275>
32. Bull. Chem. Soc. Jpn. 1987, 60, 1391.
< M., Kimura M., Sato K.-I., Horinoto H.: https://doi.org/10.1246/bcsj.60.1391>
33. Bioorg. Chem. 2001, 29, 282.
< J., Buděšínský M., Bennetová B., Mařík J., Tykva R.: https://doi.org/10.1006/bioo.2001.1210>
34. Angew. Chem., Int. Ed. Engl. 1991, 30, 238.
< H.: https://doi.org/10.1002/anie.199102381>
35a. J. Chem. Soc. 1915, 107, 1080.
< R. M., Ingold C. K., Thorpe J. F.: https://doi.org/10.1039/ct9150701080>
35b. J. Chem. Soc. 1921, 119, 1305.
C. K.:
35c. J. Am. Chem. Soc. 1991, 113, 224.
< M. E., Gervay J.: https://doi.org/10.1021/ja00001a032>
35d. J. Org. Chem. 1998, 63, 2968.
< M. E., Kiankarimi M.: https://doi.org/10.1021/jo9721554>
35e. Biopolymers 2001, 60, 396.
< C., Crisma M., Formaggio F., Peggion C.: https://doi.org/10.1002/1097-0282(2001)60:6<396::AID-BIP10184>3.0.CO;2-7>
36. Tetrahedron 1993, 49, 7215.
< J. M., Heimgartner H.: https://doi.org/10.1016/S0040-4020(01)87199-4>
37a. Helv. Chim. Acta 1995, 78, 935.
< C. B., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.19950780416>
37b. Helv. Chim. Acta 1996, 79, 1903.
< C. B., Heimgartner H.: https://doi.org/10.1002/hlca.19960790713>
38. Helv. Chim. Acta 1996, 79, 527.
< R., Bucher C. B., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.19960790220>
39. Helv. Chim. Acta 1997, 80, 1528.
< C., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.19970800515>
40a. Helv. Chim. Acta 2001, 84, 1756.
< K. A., Linden A., Heimgartner H.: https://doi.org/10.1002/1522-2675(20010613)84:6<1756::AID-HLCA1756>3.0.CO;2-J>
40b. Helv. Chim. Acta 2002, 85, 3422.
< K. A., Linden A., Heimgartner H.: https://doi.org/10.1002/1522-2675(200210)85:10<3422::AID-HLCA3422>3.0.CO;2-N>
40c. Helv. Chim. Acta 2008, 91, 526.
< K. A., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200890057>
41. Helv. Chim. Acta 2003, 86, 4093.
< R. T. N., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200390339>
42a. J. Pept. Sci. 2003, 9, 827.
< N., Heimgartner H.: https://doi.org/10.1002/psc.522>
42b. Chem. Biodivers. 2005, 2, 1127.
< N., Zerbe O., Möhle K., Linden A., Heimgartner H.: https://doi.org/10.1002/cbdv.200590084>
43. Chem. Biodivers. 2007, 4, 1144.
< W., Linden A., Heimgartner H.: https://doi.org/10.1002/cbdv.200790102>
44. Brückner H., Toniolo C. (Eds): Peptaibiotics, Topical Issue of Chem. Biodivers. 2007, 4, 1021–1412.
45a. Eur. J. Org. Chem. 2004, 3820.
< S., Heimgartner H.: https://doi.org/10.1002/ejoc.200400330>
45b. Helv. Chim. Acta 2006, 89, 1.
< S., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200690019>
45c. Tetrahedron 2006, 62, 9671.
< S., Heimgartner H.: https://doi.org/10.1016/j.tet.2006.07.082>
46a. Helv. Chim. Acta 1984, 67, 526.
< D., Heimgartner H.: https://doi.org/10.1002/hlca.19840670221>
46b. Helv. Chim. Acta 1987, 70, 329.
< D., Heimgartner H.: https://doi.org/10.1002/hlca.19870700209>
47. Helv. Chim. Acta 1997, 80, 748.
< J. M., Heimgartner H.: https://doi.org/10.1002/hlca.19970800312>
48a. Helv. Chim. Acta 2000, 83, 233.
< K. N., Linden A., Heimgartner H.: https://doi.org/10.1002/(SICI)1522-2675(20000119)83:1<233::AID-HLCA233>3.0.CO;2-1>
48b. Helv. Chim. Acta 2000, 83, 1881.
< K. N., Heimgartner H.: https://doi.org/10.1002/1522-2675(20000809)83:8<1881::AID-HLCA1881>3.0.CO;2-G>
48c. Tetrahedron 2001, 57, 2311.
< K. N., Linden A., Heimgartner H.: https://doi.org/10.1016/S0040-4020(01)00091-6>
49a. Helv. Chim. Acta 2003, 86, 3215.
< B., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200390262>
49b. Tetrahedron 2006, 62, 1079.
< B., Linden A., Kunz R., Heimgartner H.: https://doi.org/10.1016/j.tet.2005.11.002>
50. Helv. Chim. Acta 2006, 89, 731.
< , P., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200690069>
51. Helv. Chim. Acta 2005, 88, 1711.
< I., Linden A., Heimgartner H.: https://doi.org/10.1002/hlca.200590135>
52a. Chem. Biodivers. 2004, 1, 1730.
< T., Linden A., Heimgartner H.: https://doi.org/10.1002/cbdv.200490131>
52b. Tetrahedron 2005, 61, 1871.
< T., Linden A., Moehle K., Heimgartner H.: https://doi.org/10.1016/j.tet.2004.12.012>
52c. J. Pept. Sci. 2008, 14, 1051.
< T., Linden A., Heimgartner H.: https://doi.org/10.1002/psc.1041>
53. Johnson C. K.: ORTEP II, Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge (TN) 1976.
54a. Trends Biochem. Sci. 1991, 16, 350.
< C., Benedetti E.: https://doi.org/10.1016/0968-0004(91)90142-I>
54b. Macromolecules 1991, 24, 4004.
< C., Benedetti E.: https://doi.org/10.1021/ma00014a006>
54c. Curr. Opin. Struct. Biol. 1992, 2, 845.
< P.: https://doi.org/10.1016/0959-440X(92)90110-S>
54d. Proteins: Struct., Funct., Genet. 1993, 15, 235.
< G., Kurz M., Kessler H.: https://doi.org/10.1002/prot.340150303>
54e. Biopolymers 1993, 33, 1061.
< C., Crisma M., Formaggio F., Valle G., Cavicchioni G., Precigoux G., Aubry A., Kamphuis J.: https://doi.org/10.1002/bip.360330708>
54f. Chem. Biodivers. 2008, 5, 1238.
< S., Shamala N., Balaram P.: https://doi.org/10.1002/cbdv.200890112>
55. Angew. Chem., Int. Ed. Engl. 1995, 34, 1555.
< J., Davis R. E., Shimoni L., Chang N.-L.: https://doi.org/10.1002/anie.199515551>
56. Helv. Chim. Acta 1984, 67, 502.
< R. M.: https://doi.org/10.1002/hlca.19840670220>
57. Kovacs J. in: The Peptides (J. Meienhofer, Ed.), Vol. 2, p. 485. Academic Press, New York 1980.
58. J. Org. Chem. 1987, 52, 746.
S. F., Freidinger R. M., Paleveda W. J., Colton C. D., Homnick C. F., Whitter W. L., Curley P., Nutt R. F., Veber D. F.:
59. Cyclopept. Macrocycl. 1975, 251.
B.:
60a. J. Synth. Org. Chem. 2002, 60, 125.
< M.: https://doi.org/10.5059/yukigoseikyokaishi.60.125>
60b. Chemistry 2003, 9, 3082.
< M., Nishimura S., Oba M., Demizu Y., Kurihara M., Suemune H.: https://doi.org/10.1002/chem.200204476>
60c. Biopolymers 2004, 30, 1.
< M., Valle G., Bonora G. M., De Menego E., Toniolo C., Lelj F., Barone V., Fraternal F.: https://doi.org/10.1002/bip.360300103>
61. Chem. Pharm. Bull. 2007, 55, 349.
< M.: https://doi.org/10.1248/cpb.55.349>
62. Angew. Chem., Int. Ed. Engl. 1982, 21, 512.
< H.: https://doi.org/10.1002/anie.198205121>
63. Int. J. Pept. Protein Res. 1980, 15, 81.
< C., Narasinga Rao B. N.: https://doi.org/10.1111/j.1399-3011.1980.tb02554.x>
64a. Helv. Chim. Acta 1986, 69, 1153.
< P., Heimgartner H.: https://doi.org/10.1002/hlca.19860690524>
64b. Wipf P.: Ph.D. Thesis. University of Zürich, Zürich 1987.
64c. Tetrahedron Lett. 1978, 17, 1497.
< H.-D., Klessen C., Berger E., Neubert K.: https://doi.org/10.1016/S0040-4039(01)94585-X>
65. J. Org. Chem. 1978, 43, 2923.
< W. C., Kahn M., Mitra A.: https://doi.org/10.1021/jo00408a041>
66. SHELXS86; Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1990, 46, 467.
< G. M.: https://doi.org/10.1107/S0108767390000277>
67a. Maslen E. N., Fox A. G., O’Keefe M. A. in: International Tables for Crystallography (A. J. C. Wilson, Ed.), Vol. C, Table 6.1.1.1, p. 477. Kluwer Academic Publishers, Dordrecht 1992.
67b. Creagh D. C., McAuley W. J. in: International Tables for Crystallography (A. J. C. Wilson, Ed.), Vol. C, Table 4.2.6.8, p. 219. Kluwer Academic Publishers, Dordrecht 1992.
67c. Creagh D. C., Hubbell J. H. in: International Tables for Crystallography (A. J. C. Wilson, Ed.), Vol. C, Table 4.2.4.3, p. 200. Kluwer Academic Publishers, Dordrecht 1992.
68. J. Chem. Phys. 1965, 42, 3175.
< R. F., Davidson E. R., Simpson W. T.: https://doi.org/10.1063/1.1696397>
69. Acta Crystallogr. 1964, 17, 781.
< J. A., Hamilton W. C.: https://doi.org/10.1107/S0365110X64002067>
70. Sheldrick G. M.: SHELXL97, Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen 1997.