Collect. Czech. Chem. Commun.
2010, 75, 81-103
https://doi.org/10.1135/cccc2009087
Published online 2010-02-08 13:58:03
Therapeutic targets for influenza – perspectives in drug development
Taťána Majerováa,b,*, Hillary Hoffmana,b and Filip Majerc
a Department of Biochemistry, Faculty of Natural Sciences, Charles University in Prague, Hlavova 2030, 128 43 Prague 2, Czech Republic
b Joint Research Centre of Gilead Sciences and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
c Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague, Ke Karlovu 2, 128 00 Prague 2, Czech Republic
References
1. Med. J. Aust. 2006, 185 (10 Suppl.), S39.
A. W., Mackenzie J. S.:
2. Science 2009, 324, 996.
< J.: https://doi.org/10.1126/science.324_996>
3. Nature 2009, 459, 324.
< J. M.: https://doi.org/10.1038/459324a>
4. http://www.nature.com/avianflu/timeline/past_pandemics.html.
5. Rev. Sci. Tech. 2000, 1, 197.
< D. J., Brown I. H.: https://doi.org/10.20506/rst.19.1.1220>
6. Nat. Rev. Drug Discov. 2007, 6, 967.
< M.: https://doi.org/10.1038/nrd2400>
7. Annu. Rev. Genet. 2002, 36, 305.
< D. A., Skehel J. J.: https://doi.org/10.1146/annurev.genet.36.052402.152757>
8. J. Virol. 2010, 84, 558.
< J. L., Zhang K., McCullers J. A.: https://doi.org/10.1128/JVI.01785-09>
9. Nature 2009, 459, 931.
< G., Noda T., Kawaoka Y.: https://doi.org/10.1038/nature08157>
10. Nature 2005, 437, 889.
< J. K., Reid A. H., Lourens R. M., Wang R., Jin G., Fanning T. G.: https://doi.org/10.1038/nature04230>
11. Nature 2006, 440, E8.
< M. J., Gibbs A. J.: https://doi.org/10.1038/nature04823>
12. J. Mol. Phylogenet. Evol. 2008, 47, 1100.
< G., Westover K. M.: https://doi.org/10.1016/j.ympev.2008.02.003>
13. Virology 1978, 87, 13.
< C., Rohde W., Von Hoyningen V., Rott R.: https://doi.org/10.1016/0042-6822(78)90153-8>
14. WHO. Factsheet 211: http://www.who.int/mediacentre/factsheets/2003/fs211/en/S.
15. http://www.cdc.gov/flu/protect/keyfacts.htm.
16. http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm.
17. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 287.
< M.: https://doi.org/10.1016/j.cimid.2008.01.003>
18. Science 2009, 324, 1557.
< C., Donnelly C. A., Cauchemez S., Hanage W. P., Van Kerkhove M. D., Hollingsworth T. D., Griffin J., Baggaley R. F., Jenkins H. E., Lyons E. J., Jombart T., Hinsley W. R., Grassly N. C., Balloux F., Ghani A. C., Ferguson N. M., Rambaut A., Pybus O. G., Lopez-Gatell H., Alpuche-Aranda C. M., Chapela I. B., Zavala E. P., Guevara D. M., Checchi F., Garcia E., Hugonnet S., Roth C.: WHO Rapid Pandemic Assessment Collaboration. https://doi.org/10.1126/science.1176062>
19. Science 2009, 325, 197.
< R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E., Deyde V., Okomo-Adhiambo M., Gubareva L., Barnes J., Smith C. B., Emery S. L., Hillman M. J., Rivailler P., Smagala J., de Graaf M., Burke D. F., Fouchier R. A., Pappas C., Alpuche-Aranda C. M., López-Gatell H., Olivera H., López I., Myers C. A., Faix D., Blair P. J., Yu C., Keene K. M., Dotson P. D., Jr., Boxrud D., Sambol A. R., Abid S. H., St George K., Bannerman T., Moore A. L., Stringer D. J., Blevins P., Demmler-Harrison G. J., Ginsberg M., Kriner P., Waterman S., Smole S., Guevara H. F., Belongia E. A., Clark P. A., Beatrice S. T., Donis R., Katz J., Finelli L., Bridges C. B., Shaw M., Jernigan D. B., Uyeki T. M., Smith D. J., Klimov A. I., Cox N. J.: https://doi.org/10.1126/science.1176225>
20. Science 2009, 324, 996.
< J.: https://doi.org/10.1126/science.324_996>
21. http://www.who.int/csr/disease/swineflu/frequently_asked_questions/vaccine_prepared ness/en/.
22. Nature 2009, 459, 14.
< D.: https://doi.org/10.1038/459014a>
23. Occup. Med. 2002, 52, 281.
< J. L., Aymard M., Bardol A.: https://doi.org/10.1093/occmed/52.5.281>
24. Antiviral Res. 2000, 48, 1.
< R. W., Smee D. F.: https://doi.org/10.1016/S0166-3542(00)00125-X>
25. Nat. Biotechnol. 2008, 26, 107.
< A., Srinivasan A., Raman R., Viswanathan K., Raguram S., Tumpey T. M., Sasisekharan V., Sasisekharan R.: https://doi.org/10.1038/nbt1375>
26. Structure 1994, 2, 719.
< S. J., Skehel J. J., Wiley D. C.: https://doi.org/10.1016/S0969-2126(00)00073-3>
27. J. Med. Chem. 1991, 34, 3138.
< P. L., Galliker P. K., Glick G. D., Knowles J. R.: https://doi.org/10.1021/jm00114a025>
28. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17736.
< R. J., Kerry P. S., Stevens D. J., Steinhauer D. A., Martin S. R., Gamblin S. J., Skehel J. J.: https://doi.org/10.1073/pnas.0807142105>
29. Biochemistry 1993, 32, 2967.
< D. L., Yamasaki R. B., Buswell R. L., Stearns J. F., White J. M., Kuntz I. D.: https://doi.org/10.1021/bi00063a007>
30. J. Virol. 1997, 71, 8808.
L. R., Kuntz I. D., White J. M.:
31. Bioorg. Med. Chem. Lett. 2002, 12, 3379.
< K., Torri A. F., Luo G., Cianci C., Grant-Young K., Danetz S., Tiley L., Krystal M., Meanwell N. A.: https://doi.org/10.1016/S0960-894X(02)00761-8>
32. Bioorg. Med. Chem. Lett. 1999, 9, 2177.
< K. L., Ruediger E., Luo G., Cianci C., Danetz S., Tiley L., Trehan A. K., Monkovic I., Pearce B., Martel A., Krystal M., Meanwell N. A.: https://doi.org/10.1016/S0960-894X(99)00361-3>
33. Virol. J. 2009, 6, 74.
< M., Jahanshiri F., Omar A. R., Ideris A., Hassan S. S., Yusoff K.: https://doi.org/10.1186/1743-422X-6-74>
34. Carbohydr. Res. 2006, 341, 1803.
< Y., Watanabe S., Suzuki T., Suzuki Y., Ishida H., Kiso M., Katayama T., Kumagai H., Yamamoto K.: https://doi.org/10.1016/j.carres.2006.04.024>
35. Glycobiology 2008, 18, 779.
< K. I., Murata T., Yoshida K., Takahashi Y., Minamijima Y. H., Miwa Y., Adachi S., Ogata M., Usui T., Suzuki Y., Suzuki T.: https://doi.org/10.1093/glycob/cwn067>
36. Bioorg. Med. Chem. 2007, 15, 1383.
< M., Murata T., Murakami K., Suzuki T., Hidari K. I., Suzuki Y., Usui T.: https://doi.org/10.1016/j.bmc.2006.11.006>
37. Antiviral Res. 1997, 33 ,129.
< A. B., Byramova N. E., Bovin N. V., Gambaryan A. S., Matrosovich M. N.: https://doi.org/10.1016/S0166-3542(96)00998-9>
38. Biomacromolecules 2009, 10, 1894.
< M., Hidari K. I., Kozaki W., Murata T., Hiratake J., Park E. Y., Suzuki T., Usui T.: https://doi.org/10.1021/bm900300j>
39. Appl. Microbiol. 1969, 5, 824.
J. C., Suggs M. T., Hall E. C.:
40. Nature 2006, 444, 378.
< S., Suzuki Y., Suzuki T., Le M. Q., Nidom C. A., Sakai-Tagawa Y., Muramoto Y., Ito M., Kiso M., Horimoto T., Shinya K., Sawada T., Kiso M., Usui T., Murata T., Lin Y., Hay A., Haire L. F., Stevens D. J., Russell R. J., Gamblin S. J., Skehel J. J., Kawaoka Y.: https://doi.org/10.1038/nature05264>
41. Antimicrob. Agents Chemother. 2003, 47, 2518.
< B. R., Smee D. F., Turpin J. A., Saucedo C. J., Gustafson K. R., Mori T., Blakeslee D., Buckheit R., Boyd M. R.: https://doi.org/10.1128/AAC.47.8.2518-2525.2003>
42. Nat. Struct. Mol. Biol. 2009, 16, 265.
< J., Hwang W. C., Perez S., Wei G., Aird D., Chen L. M., Santelli E., Stec B., Cadwell G., Ali M., Wan H., Murakami A., Yammanuru A., Han T., Cox N. J., Bankston L. A., Donis R. O., Liddington R. C., Marasco W. A.: https://doi.org/10.1038/nsmb.1566>
43. Science 2009, 324, 246.
< D. C., Bhabha G., Elsliger M. A., Friesen R. H., Jongeneelen M., Throsby M., Goudsmit J., Wilson I. A.: https://doi.org/10.1126/science.1171491>
44. Antimicrob. Agents Chemother. 2006, 50, 1470.
< M. P., Aschenbrenner L. M., Smee D. F., Wandersee M. K., Sidwell R.. W., Gubareva L. V., Mishin V. P., Hayden F. G., Kim D. H., Ing A., Campbell E. R., Yu M., Fang F.: https://doi.org/10.1128/AAC.50.4.1470-1479.2006>
45. Science 1964, 144, 862.
< W. L., Gruntert R. R., Haff R. F., McGahen J. W., Neumayer E. M., Paushock M., Watts J. C., Wood T. R., Hermann E. C., Hoffmann C. E.: https://doi.org/10.1126/science.144.3620.862>
46. Collect. Czech. Chem. Commun. 1933, 5, 1.
< S., Macháček V.: https://doi.org/10.1135/cccc19330001>
47. Clin. Infect. Dis. 2009, 48, 1254.
< G. A., Jacobson R. M., Ovsyannikova I. G.: https://doi.org/10.1086/598989>
48. Med. Res. Rev. 2009, 29, 611.
< E.: https://doi.org/10.1002/med.20153>
49. Bioorg. Med. Chem. 2008, 16, 9925.
< P., Duque M. D., Vázquez S., Naesens L., De Clercq E., Sureda F. X., López-Querol M., Camins A., Pallàs M., Prathalingam S. R., Kelly J. M., Romero V., Ivorra D., Cortés D.: https://doi.org/10.1016/j.bmc.2008.10.028>
50. Bioorg. Med. Chem. 2009, 17, 1534.
< G., Kolocouris N., Naesens L., De Clercq E.: https://doi.org/10.1016/j.bmc.2009.01.009>
51. Bioorg. Med. Chem. 2003, 11, 5485.
< G., Foscolos G. B., Fytas G., Kolocouris A., Kolocouris N., Pannecouque C., Witvrouw M., Padalko E., Neyts J., De Clercq E.: https://doi.org/10.1016/j.bmc.2003.09.024>
52. Bioorg. Med. Chem. 2006, 14, 3341.
< G., Fytas C., Papanastasiou I., Foscolos G. B., Fytas G., Padalko E., De Clercq E., Naesens L., Neyts J., Kolocouris N.: https://doi.org/10.1016/j.bmc.2005.12.056>
53. J. Am. Chem. Soc. 2009, 131, 8066.
< J., Cady S. D., Balannik V., Pinto L. H., DeGrado W. F., Hong M.: https://doi.org/10.1021/ja900063s>
54. Bioorg. Med. Chem. Lett. 2007, 17, 692.
< D., Fytas G., Kolocouris A., Fytas C., Kolocouris N., Foscolos G. B., Padalko E., Neyts J., De Clercq E.: https://doi.org/10.1016/j.bmcl.2006.10.092>
55. Bioorg. Chem. 2006, 34, 248.
< D., Tataridis D., Stamatiou G., Kolocouris A., Foscolos G. B., Fytas G., Kolocouris N., Padalko E., Neyts J., De Clercq E.: https://doi.org/10.1016/j.bioorg.2006.05.004>
56. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 12283.
< C., Polishchuk A. L., Ohigashi Y., Stouffer A. L., Schön A., Magavern E., Jing X., Lear J. D., Freire E., Lamb R. A., DeGrado W. F., Pinto L. H.: https://doi.org/10.1073/pnas.0905726106>
57. Lancet Infect. Dis. 2008, 8, 571.
< C.: https://doi.org/10.1016/S1473-3099(08)70070-7>
58. Nat. Struct. Mol. Biol. 2008, 15, 500.
< D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R. W., Ortin J., Hart D. J., Cusack S.: https://doi.org/10.1038/nsmb.1421>
59. Nature 2009, 458, 914.
< A., Bouvier D., Crpin T., McCarthy A. A., Hart D. J., Baudin F., Cusack S., Ruigrok R. W.: https://doi.org/10.1038/nature07745>
60. Nature 2008, 454, 1123.
< X., Zhou J., Bartlam M., Zhang R., Ma J., Lou Z., Li X., Li J., Joachimiak A., Zeng Z., Ge R., Rao Z., Liu Y.: https://doi.org/10.1038/nature07120>
61. Acta Virol. 2007, 51, 101.
H., Russ G.:
62. J. Virol. 2001, 75, 134.
< M. B., Pritlove D. C., Poon L. L., Brownlee G. G.: https://doi.org/10.1128/JVI.75.1.134-142.2001>
63. J. Gen. Virol. 2009, 90, 1392.
< S., Auerochs S., Gröne M., Marschall M.: https://doi.org/10.1099/vir.0.009050-0>
64. Antivir. Chem. Chemother. 2009, 19, 213.
< I., Geng F., Tiley L.: https://doi.org/10.1177/095632020901900504>
65. Antimicrob. Agents Chemother. 1994, 38, 2827.
< J., Selnick H., Davies M. E., Armstrong M. E., Baldwin J., Bourgeois M., Hastings J., Hazuda D., Lewis J., McClements W.: https://doi.org/10.1128/AAC.38.12.2827>
66. Antimicrob. Agents Chemother. 1996, 40, 1304.
< J. C., Selnick H., Wolanski B., Tomassini J. E.: https://doi.org/10.1128/AAC.40.5.1304>
67. J. Med. Chem. 2003, 46, 1153.
< K. E., Ermert P., Fssler J., Ives J., Martin J. A., Merrett J. H., Obrecht D., Williams G., Klumpp K.: https://doi.org/10.1021/jm020334u>
68. Antivir. Chem. Chemother. 1996, 7, 353.
< C., Chung T. D. Y., Meanwell N., Putz H., Hagen M., Colonno R. J., Krystal M.: https://doi.org/10.1177/095632029600700609>
69. J. Org. Chem. 2001, 66, 5504.
< S. B., Tomassini J. E.: https://doi.org/10.1021/jo015665d>
70. Antiviral Res. 2009, 82, 95.
< Y., Takahashi K., Shiraki K., Sakamoto K., Smee D. F., Barnard D. L., Gowen B. B., Julander J. G., Morrey J. D.: https://doi.org/10.1016/j.antiviral.2009.02.198>
71. Antimicrob. Agents Chemother. 1995, 39, 2454.
< M., Ellis M., Klumpp K., Court S., Ford M.: https://doi.org/10.1128/AAC.39.11.2454>
72. Nat. Rev. Drug Discov. 2006, 5, 1015.
< E.: https://doi.org/10.1038/nrd2175>
73. J. Virol. 2007, 81, 7801.
< A., Mayer D., Chase G., Tegge W., Frank R., Kochs G., García-Sastre A., Schwemmle M.: https://doi.org/10.1128/JVI.00724-07>
74. Rev. Med. Virol. 2006, 16, 329.
< O. G., Fodor E.: https://doi.org/10.1002/rmv.512>
75. Nucleic Acids Res. 2007, 35, 4573.
< U., Ortin J.: https://doi.org/10.1093/nar/gkm230>
76. Gen. Virol. 2009, 90, 1398.
< N. C., Smith M., Vreede F. T., Fodor E. J.: https://doi.org/10.1099/vir.0.009639-0>
77. EMBO J. 1998, 17, 288.
< R. E., Talon J., Palese P.: https://doi.org/10.1093/emboj/17.1.288>
78. J. Gen. Virol. 2008, 89, 2359.
< B. G., Randall R. E., Ortín J., Jackson D.: https://doi.org/10.1099/vir.0.2008/004606-0>
79. Nature 2009, 459, 931.
< G., Noda T., Kawaoka Y.: https://doi.org/10.1038/nature08157>
80. J. Gen. Virol. 2009, 90, 2124.
< V., Prabhaker V. K., Kukol A.: https://doi.org/10.1099/vir.0.011270-0>
81. J. Virol. 2009, 83, 1881.
< D., Walkiewicz M. P., Frieman M., Baric R. S., Auble D. T., Engel D. A.: https://doi.org/10.1128/JVI.01805-08>
82. J. Biomol. Screen. 2008, 13, 581.
< M., Fernandez Y., Ortin J., Pelaez F., Cabello M. A.: https://doi.org/10.1177/1087057108318754>
83. Curr. Opin. Pharmacol. 2008, 8, 280.
< A., Novobrantseva T.: https://doi.org/10.1016/j.coph.2008.04.005>
84. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8676.
< Q., Filip L., Bai A., Nguyen T., Eisen H. N., Chen J.: https://doi.org/10.1073/pnas.0402486101>
85. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8682.
< S. M., Lo C. Y., Tumpey T. M., Epstein S. L: https://doi.org/10.1073/pnas.0402630101>
86. PLoS ONE 2009, 4, e5671.
< H. Y., Zhao G. Y., Huang J. D., Jin D. Y., Yuen K. Y., Zheng B. J.: https://doi.org/10.1371/journal.pone.0005671>
87. Antiviral Res. 2007, 76, 186.
< H., Jin M., Yu Z., Xu X., Peng Y., Wu H., Liu J., Liu H., Cao S., Chen H.: https://doi.org/10.1016/j.antiviral.2007.07.002>
88. J. Gen. Virol. 2009, 90, 1916.
< W., Haasnoot J., Fouchier R., de Haan P., Berkhout B.: https://doi.org/10.1099/vir.0.008284-0>
89. J. Biotechnol. 2008, 135, 140.
< K., He H., Wu Y., Duan M.: https://doi.org/10.1016/j.jbiotec.2008.03.007>
90. Antimicrob. Agents Chemother. 2006, 50, 3724.
< Q., Pastey M., Kobasa D., Puthavathana P., Lupfer C., Bestwick R. K., Iversen P. L., Chen J., Stein D. A.: https://doi.org/10.1128/AAC.00644-06>
91. Curr. Pharm. Des. 2008, 14, 2619.
< D. A.: https://doi.org/10.2174/138161208786071290>
92. EMBO Rep. 2005, 6, 1176.
< M., Sczakiel G : https://doi.org/10.1038/sj.embor.7400535>
93. RNA 2009, 15, 627.
< A., Overhoff M., Wünsche W., Rompf M., Turner J. J., Ivanova G. D., Gait M. J., Sczakiel G.: https://doi.org/10.1261/rna.1305209>
94. Methods Mol. Biol. 2009, 487, 331.
< S.: https://doi.org/10.1007/978-1-60327-547-7_16>
95. Nature 2004, 432, 173.
< J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J.: https://doi.org/10.1038/nature03121>
96. J. Controlled Release 2008, 130, 57.
< M., Hozsa C., Lungwitz U., Watanabe K., Umeda I., Kato H., Goepferich A.: https://doi.org/10.1016/j.jconrel.2008.05.016>
97. Nature 2006, 441, 111.
< T. S., Lee A. C., Akinc A., Bramlage B., Bumcrot D., Fedoruk M. N., Harborth J., Heyes J. A., Jeffs L. B., John M.: https://doi.org/10.1038/nature04688>
98. J. Liposome Res. 2007, 17, 39.
< A., De Jonge J., Holtrop M., Wilschut J.: https://doi.org/10.1080/08982100601186516>
99. Virus Res. 2007, 124, 12.
< S., Akarsu H., Ruigrok R. W., Baudin F.: https://doi.org/10.1016/j.virusres.2006.09.013>
100. J. Gen. Virol. 2007, 88, 942.
< Y. K., Liu Q., Tikoo S. K., Babiuk L. A., Zhou Y.: https://doi.org/10.1099/vir.0.82483-0>
101. Biochemistry 1985, 24, 8145.
< W., Datema R., Romero P. A., Schwarz R. T.: https://doi.org/10.1021/bi00348a046>
102. J. Virol. 2008, 82, 229.
< Y., Huang T., Ly H., Parslow T. G., Liang Y.: https://doi.org/10.1128/JVI.01541-07>
103. Arch. Virol. 2009, 154, 821.
< S., Clausi V., Nosi D., Azzi A.: https://doi.org/10.1007/s00705-009-0380-2>
104. Antiviral Res. 1991, 15, 149.
< H., Kurokawa M., Niwayama S.: https://doi.org/10.1016/0166-3542(91)90032-M>
105. Virology 1991, 183, 769.
< N. C., Knox K., Schlesinger M. J.: https://doi.org/10.1016/0042-6822(91)91008-5>
106. J. Virol. Methods 2009, 159, 105.
< O., Chaicumpa W., Kulkeaw K., Maneewatch S., Thueng-in K., Srimanote P., Tongtawe P., Songserm T., Lekcharoensuk P., Tapchaisri P.: https://doi.org/10.1016/j.jviromet.2009.03.010>
107. Virus Res. 2009, 143, 147.
< D. P., Balogun R. A., Yamada H., Zhou Z. H., Barman S.: https://doi.org/10.1016/j.virusres.2009.05.010>
108. J. Biol. Chem. 2009, 284, 15729.
< T., Coppola J. M., Larsen M. J., van Dort M. E., Ross B. D., Day R., Rehemtulla A., Fuller R. S.: https://doi.org/10.1074/jbc.M901540200>
109. Curr. Pharm. Des. 2007, 13, 405.
< H., Okumura Y., Yamada H., Le T. Q., Yano M.: https://doi.org/10.2174/138161207780162971>
110. Med. J. Aust. 2006, 185, S58.
M. E., Emery S., Dwyer D. E.:
111. J. Am. Med. Assoc. 2009, 301, 1066.
M., Weinstock M. D., Zuccotti G.:
112. Centers for Disease Control and Prevention (CDC): MMWR Morb. Mortal. Weakly Rep. 2009, 58, 433.
113. Antimicrob. Agents Chemother. 2009, 53, 186.
< M., Tomozawa T., Kakuta M., Tokumitsu A., Nasu H., Kubo S.: https://doi.org/10.1128/AAC.00333-08>
114. J Med. Chem. 2009, 52, 2667.
< J., Lee D. C., Law A. H., Yang C. L., Poon L. L., Lau A. S., Jones S. J.: https://doi.org/10.1021/jm800455g>
115. Antiviral Res. 2009, 81, 123.
< H. C., Tseng C. P., Yang J. M., Ju Y. W., Tseng S. N., Chen Y. F., Chao Y. S., Hsieh H. P., Shih S. R., Hsu J. T.: https://doi.org/10.1016/j.antiviral.2008.10.006>
116. Biochem. J. 2006, 399, 215.
< D., Smith B. J., Huyton T., Labrou N. E.: https://doi.org/10.1042/BJ20060447>
117. Bioorg. Med. Chem. 2009, 17, 2744.
< Y. B., Curtis-Long M. J., Lee J. W., Kim J. H., Kim J. Y., Kang K. Y., Lee W. S., Park K. H.: https://doi.org/10.1016/j.bmc.2009.02.042>
118. Bioorg. Med. Chem. Lett. 2008, 18, 6046.
< Y. B., Curtis-Long M. J., Kim J. H., Jeong S. H., Yang M. S., Lee K. W., Lee W. S., Park K. H.: https://doi.org/10.1016/j.bmcl.2008.10.033>
119. J. Clin. Microbiol. 2003, 41, 742.
< N. T., Trivedi T., Zeller J., Hodges-Savola C., McKimm-Breschkin J. L., Zambon M., Hayden F. G.: https://doi.org/10.1128/JCM.41.2.742-750.2003>
120. Anal. Biochem. 1979, 94, 287.
< M., Mameli L., Blisle M., Dallaire L., Melançon S. B.: https://doi.org/10.1016/0003-2697(79)90362-2>
121. Anal. Biochem. 2000, 280, 291.
< R. C., Edwards B., Juo R. R., Voyta J. C., Tisdale M., Bethell R. C.: https://doi.org/10.1006/abio.2000.4517>
122. Antiviral Res. 2008, 79, 199.
< C. Y., Wang S. Y., Shie J. J., Jeng K. S., Temperton N. J., Fang J. M., Wong C. H., Cheng Y. S.: https://doi.org/10.1016/j.antiviral.2008.03.002>
123. Bioorg. Med. Chem. Lett. 2007, 17, 717.
< J., Koyama T., Miyamoto D., Yingsakmongkon S., Hidari K. I., Jampangern W., Suzuki T., Suzuki Y., Esumi Y., Hatano K., Terunuma D., Matsuoka K.: https://doi.org/10.1016/j.bmcl.2006.10.085>
124. Biophys. Chem. 2009, 140, 35.
< P. M.: https://doi.org/10.1016/j.bpc.2008.11.004>
125. Biochem. Biophys. Res. Commun. 2009, 383, 445.
< P., Chiappori F., Merelli I., Cozzi P., Rovida E., Milanesi L.: https://doi.org/10.1016/j.bbrc.2009.04.030>
126. Nat. Med. 2006, 12, 1203.
< M. D., Simmons C. P., Thanh T. T., Hien V. M., Smith G. J., Chau T. N., Hoang D. M., Chau N. V., Khanh T. H., Dong V. C., Qui P. T., Cam B. V., Ha do Q., Guan Y., Peiris J. S., Chinh N. T., Hien T. T., Farrar J.: https://doi.org/10.1038/nm1477>
127. J. Med. Microbiol. 2007, 56, 875.
< M. J.: https://doi.org/10.1099/jmm.0.47124-0>
128. J. Antimicrob. Chemother. 2009, 64, 1.
< S.: https://doi.org/10.1093/jac/dkp161>
129. Nat. Cell Biol. 2001, 3, 301.
< S., Wolff T., Ehrhardt C., Hobom G., Planz O., Rapp U. R., Ludwig S.: https://doi.org/10.1038/35060098>
130. J. Virol. 2008, 82, 9880.
< N., Xin Z. T., Liang Y., Ly H., Liang Y.: https://doi.org/10.1128/JVI.00909-08>
131. Br. Med. J. 2002, 325, 458.
< R.: https://doi.org/10.1136/bmj.325.7362.458>
132. Mini Rev. Med. Chem. 2008, 8, 491.
< N., Toyoda H.: https://doi.org/10.2174/138955708784223530>
133. Antiviral Res. 2002, 56, 207.
< N., Ohyama K., Bessho T., Yuan B., Yamakawa T.: https://doi.org/10.1016/S0166-3542(02)00109-2>
134. Intervirology 2005, 48, 336.
< N., Ohyama K., Bessho T., Toyoda H.: https://doi.org/10.1159/000085103>
135. J. Antimicrob. Chemother. 2003, 52, 8.
< N., Ohyama K.: https://doi.org/10.1093/jac/dkg282>
136. Clin. Infect. Dis. 2006, 43, 199.
< D. S.: https://doi.org/10.1086/505116>
137. http://www.ncbi.nlm.nih.gov/genomes/FLU/aboutdatabase.html.
138. http://www.rcsb.org/pdb.
139. J. Biomol. Struct. Dynam. 2009, 27, 171.
< C. Y., Chang Y. H., Bau D. T., Huang H. J., Tsai F. J., Tsai C. H., Chen C. Y.: https://doi.org/10.1080/07391102.2009.10507307>
140. Antimicrob. Agents Chemother. 2010, 54, 126.
< D. F., Hurst B. L., Wong M. H., Bailey K. W., Tarbet E. B., Morrey J. D., Furuta Y.: https://doi.org/10.1128/AAC.00933-09>