Collect. Czech. Chem. Commun.
2010, 75, 105-119
https://doi.org/10.1135/cccc2009552
Published online 2010-02-09 14:05:08
Synthesis of zirconocene silsesquioxane complexes and their ethene polymerization activity in systems with methylaluminoxane
Vojtech Vargaa, Jiří Pinkasb, Róbert Gyepesc, Petr Štěpničkac, Michal Horáčekb, Zdeněk Bastlb and Karel Machb,*
a Research Institute of Inorganic Chemistry, Revoluční 84, 400 01 Ústí nad Labem, Czech Republic
b J. Heyrovský Institute of Physical Chemistry of the AS CR, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
c Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
References
1a. J. Am. Chem. Soc. 1965, 87, 4313.
< J. F., Vogt L. H.: https://doi.org/10.1021/ja00947a016>
1b. J. Am. Chem. Soc. 1989, 111, 1741.
< F. J., Newman D. A., Walzer J. F.: https://doi.org/10.1021/ja00187a028>
1c. J. Am. Chem. Soc. 1990, 112, 1931.
< F. J., Newman D. A.: https://doi.org/10.1021/ja00161a044>
1d. Chem. Commun. 1998, 399.
< F. J., Soulivong D., Eklund A. G.: https://doi.org/10.1039/a707061f>
1e. Angew. Chem., Int. Ed. Engl. 1992, 31, 586.
< F. T.: https://doi.org/10.1002/anie.199205861>
1f. J. Organomet. Chem. 2008, 693, 1301.
< H., Kondo S.-I., Tanaka R., Oku H., Unno M.: https://doi.org/10.1016/j.jorganchem.2008.01.027>
2a. Chem. Eur. J. 2009, 15, 4382.
< R. M., Buch F., Delevoye L., Harder S.: https://doi.org/10.1002/chem.200802512>
2b. Dalton Trans. 2003, 3303.
< J., Gates B. C.: https://doi.org/10.1039/b303285j>
2c. Chem. Rev. 2005, 105, 4073.
< J. R., Chadwick J. C., Duchateau R., Friederichs N.: https://doi.org/10.1021/cr040670d>
3a. J. Am. Chem. Soc. 2002, 124, 9856.
< T. W., Duchateau R., van Santen R. A., Meetsma A., Yap G. P. A.: https://doi.org/10.1021/ja0122243>
3b. J. Catal. 2005, 233, 90.
< J. M., García J. I., Mayoral J. A., Vispe E.: https://doi.org/10.1016/j.jcat.2005.04.018>
3c. Organometallics 2009, 28, 2668.
< C., Carlucci L., D’Alfonso G., Lucenti E., Macchi P., Roberto D., Sironi A., Ugo R.: https://doi.org/10.1021/om800991s>
3d. Organometallics 2007, 26, 4204.
< R., van Meerendonk W. J., Huijser S., Staal B. B. P., van Schilt M. A., Gerritsen G., Meetsma A., Koning C. E., Kemmere M. F., Keurentjes J. T. F.: https://doi.org/10.1021/om700367x>
4a. J. Organomet. Chem. 1997, 542, 141.
< Ph. G.: https://doi.org/10.1016/S0022-328X(96)06821-0>
4b. Eur. J. Inorg. Chem. 2004, 675.
< R. W. J. M., van Santen R. A., Abbenhuis H. C. L.: https://doi.org/10.1002/ejic.200300412>
4c. Chem. Rev. 2002, 102, 3525.
< R.: https://doi.org/10.1021/cr010386b>
4d. Adv. Organomet. Chem. 2005, 53, 101.
< V., Edelman F. T.: https://doi.org/10.1016/S0065-3055(05)53004-1>
5a. Inorg. Chem. 1988, 27, 3440.
< F. J., Gonzales S. L., Ziller J. W.: https://doi.org/10.1021/ic00293a003>
5b. Inorg. Chem. 1990, 29, 1604.
< F. J., Walzer J. F.: https://doi.org/10.1021/ic00334a006>
5c. J. Am. Chem. Soc. 1992, 114, 3859.
< F. J., Budzichowski T. A., Rahimian K., Ziller K. J.: https://doi.org/10.1021/ja00036a038>
5d. Chem. Commun. 1997, 2411.
< M., Herold R. H. M., Orpen A. G.: https://doi.org/10.1039/a704969b>
5e. J. Chem. Soc., Dalton Trans. 1999, 3791.
< M., Herold R. H. M., Orpen A. G., Overgaag M. T. A.: https://doi.org/10.1039/a905887g>
5f. J. Organomet. Chem. 2001, 620, 80.
< F. T., Giessmann S., Fischer A.: https://doi.org/10.1016/S0022-328X(00)00867-6>
5g. Organometallics 2004, 23, 5824.
< K., Itayama N., Watanabe N., Bundo M., Kondo T., Mitsudo T.: https://doi.org/10.1021/om040082q>
6a. Organometallics 1998, 17, 5222.
< R., Abbenhuis H. C. L., van Santen R. A., Thiele S. K.-H., van Tol M. F. H.: https://doi.org/10.1021/om980572g>
6b. Organometallics 1998, 17, 5663.
< R., Abbenhuis H. C. L., van Santen R. A., Meetsma A., Thiele S. K.-H., van Tol M. F. H.: https://doi.org/10.1021/om980687k>
6c. Organometallics 1999, 18, 5447.
< R., Cremer U., Harmsen R. J., Mohamud S. I., Abbenhuis H. C. L., van Santen R. A., Meetsma A., Thiele S. K.-H., van Tol M. F. H., Kranenburg M.: https://doi.org/10.1021/om9904495>
6d. Macromol. Rapid Commun. 2001, 22, 573.
< Y., Han Y., Lee M. H., Yoon S. W., Choi K. H., Song B. G., Do Y.: https://doi.org/10.1002/1521-3927(20010501)22:8<573::AID-MARC573>3.0.CO;2-S>
6e. Organometallics 2002, 21, 4.
< J. R., Duchateau R., van Santen R. A., Ellis D. D., Spek A. L.: https://doi.org/10.1021/om010344d>
6f. Organometallics 2002, 21, 1719.
< R. A., Kreller D. I., Tian J., Kim H., Taylor N. J., Corrigan J. F., Collins S.: https://doi.org/10.1021/om010284b>
7a. Chem. Lett. 2000, 628.
< K., Bundo M., Nakabayashi D., Itayama N., Kondo T., Mitsudo T.: https://doi.org/10.1246/cl.2000.628>
7b. Organometallics 2001, 20, 3519.
< M. D., Duchateau R., van Santen R. A., Yap G. P. A.: https://doi.org/10.1021/om0102596>
8. J. Am. Chem. Soc. 1986, 108, 3850.
< F. J.: https://doi.org/10.1021/ja00273a062>
9. Chang M. (Exxon): PCT Int. Appl. WO 9604318 A1, 1996; Chem. Abstr. 1996, 124, 318150.
10. J. Phys. Chem. 1996, 100, 2035.
< P., Calzaferri G.: https://doi.org/10.1021/jp952198t>
11. J. Chem. Soc. 1961, 2601.
< C. G., Bradley D. C., Lewis J., Thomas I. M.: https://doi.org/10.1039/jr9610002601>
12. Organometallics 2009, 28, 1748.
< V., Císařová I., Gyepes R., Horáček M., Kubišta J., Mach K.: https://doi.org/10.1021/om801209f>
13. J. Chem. Soc. A 1969, 2106.
< P. M., Kingston B. M., Lappert M. F., Spalding T. R., Srivastava R. C.: https://doi.org/10.1039/j19690002106>
14. Inorg. Chem. 2005, 44, 4843.
< J. L., Stovneng J. A., Ystenes M., Rytter E.: https://doi.org/10.1021/ic0482638>
15. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143; and references therein.
< H. H., Fischer D., Mülhaupt R., Rieger B., Waymouth R. M.: https://doi.org/10.1002/anie.199511431>
16a. Adv. Organomet. Chem. 1980, 18, 99.
< H., Kaminsky W.: https://doi.org/10.1016/S0065-3055(08)60307-X>
16b. Organometallics 1989, 8, 2892.
< R. F., LaPointe R. E., Bradley P. K., Baenziger N.: https://doi.org/10.1021/om00114a026>
16c. Organometallics 1992, 11, 362.
< J. J. W., Tan Y. Y., Meetsma A., Teuben J. H., Renkema J., Evens G. G.: https://doi.org/10.1021/om00037a061>
16d. Organometallics 1992, 11, 3271.
< A. D.: https://doi.org/10.1021/om00046a025>
16e. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 1603.
< J. C. W., He D.-W.: https://doi.org/10.1002/pola.1991.080291109>
17a. J. Mol. Catal. A 2010, 315, 213.
< F., Alves M. C. M., Stedile F. C., Pergher S. B., dos Santos J. H. Z.: https://doi.org/10.1016/j.molcata.2009.09.014>
17b. J. Mol. Catal. A 2007, 265, 167.
< F., Pires G. P., Petry C. F., Pozebon P., Stedile F. C., dos Santos J. H. Z., Rigacci A.: https://doi.org/10.1016/j.molcata.2006.10.008>
17c. J. Mol. Catal. A 1999, 139, 199.
< J. H. Z., Krug C., da Rosa M. B., Stedile F. C., Dupont J., Forte M. de C.: https://doi.org/10.1016/S1381-1169(98)00173-3>
17d. Macromol. Chem. Phys. 1999, 200, 751.
< J. H. Z., Larentis A., da Rosa M. B., Krug C., Baumvol I. J. R., Dupont J., Stedile F. C., Forte M. de C.: https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<751::AID-MACP751>3.0.CO;2-2>
18. Transition Met. Chem. (London) 1981, 6, 90.
< H., Dosedlová A., Hanuš V., Mach K.: https://doi.org/10.1007/BF00626113>