Collect. Czech. Chem. Commun.
2010, 75, 1149-1199
https://doi.org/10.1135/cccc2010054
Published online 2010-11-10 12:26:17
Fifty years of the closo-decaborate anion chemistry
Igor B. Sivaeva,*, Alexander V. Prikaznova and Daoud Naoufalb,c
a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia
b EDST, PRASE, Université Libanaise, Hadath, Liban
c Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO, Université Libanaise, Faculté des Sciences I, Hadath, Liban
References
1. J. Am. Chem. Soc. 1959, 81, 5519.
< M. F., Pitochelli A. R.: https://doi.org/10.1021/ja01529a077>
2a. Grimes R. N.: Carboranes. Academic Press, New York 1970.
2b. Chem. Rev. 1992, 92, 209.
< V. I.: https://doi.org/10.1021/cr00010a002>
2c. Coord. Chem. Rev. 2002, 232, 173.
< J. F., Guenther K. J., King A. S., Morel P., Schaffer P., Sogbein O. O., Stephenson K. A.: https://doi.org/10.1016/S0010-8545(02)00087-5>
3. Collect. Czech. Chem. Commun. 2002, 67, 679.
< I. B., Bregadze V. I., Sjöberg S.: https://doi.org/10.1135/cccc20020679>
4. Chem. Rev. 2006, 106, 5208.
< S., Schreiber P. J., Michl J.: https://doi.org/10.1021/cr050548u>
5. Collect. Czech. Chem. Commun. 1999, 64, 783.
< I. B., Bregadze V. I.: https://doi.org/10.1135/cccc19990783>
6. Hawthorne M. F. in: The Chemistry of Boron and Its Compounds (E. L. Muetterties, Ed.), p. 223. John Wiley & Sons, New York 1967.
7. Chin. J. Org. Chem. 2009, 29, 822.
Y., Chen H., Miao J., Sun G., Dou J.:
8. Kuznetsov N. T., Ionov S. P., Solntsev K. A.: Razvitie kontseptsii aromatichnosti. Poliedricheskie struktury (Development of the Concept of Aromaticity. Polyhedral Structures), p. 255. Nauka, Moscow 2009.
9. Inorg. Synth. 1967, 9, 16.
< M. F., Pilling R. L.: https://doi.org/10.1002/9780470132401.ch6>
10. Inorg. Chem. 1964, 3, 444.
< E. L., Balthis J. H., Chia Y. T., Knoth W. H., Miller H. C.: https://doi.org/10.1021/ic50013a030>
11a. Volkov V. V., Myakishev K. G.: 8th Int. Meeting on Boron Chemistry IMEBORON VIII, Knoxville 1993. Book of Abstracts, p. 151.
11b. Chem. Substainable Dev. 2005, 13, 155.
V. V., Myakishev K. G., Sokolov M. N., Fedin V. P., Gushchin A. L., Ilinchik E. A.:
12a. J. Am. Chem. Soc. 1989, 111, 8946.
< III J. P., Deng H.-B., Shore S. G.: https://doi.org/10.1021/ja00206a043>
12b. Inorg. Chem. 1992, 31, 2756.
< III J. P., Shore S. G.: https://doi.org/10.1021/ic00039a018>
13. Inorg. Chem. 1967, 6, 1196.
< J. M., Hough W. V., Hefferan G. T.: https://doi.org/10.1021/ic50052a028>
14. J. Chem. Res., Synop. 1978, 402.
G., Dazord J., Mongeot H., Cueilleron J.:
15. Polyhedron 1985, 4, 1329.
< D., Spalding T. R.: https://doi.org/10.1016/S0277-5387(00)84128-5>
16. Inorg. Chim. Acta 1986, 115, 11.
< M., Atchekzai J., Mongeot H.: https://doi.org/10.1016/S0020-1693(00)87692-6>
17. Bull. Soc. Chim. Fr. 1986, 385.
H., Bonnetot B., Atchekzai J., Colombier M., Vigot-Vieillard C.:
18. Bull. Soc. Chim. Fr. 1989, 632.
B., Frange B., Mongeot H., El Shamy S., Ouassas A., R’kha C.:
19. Inorg. Chem. 1966, 5, 1955.
< F., Muetterties E. L.: https://doi.org/10.1021/ic50045a027>
20a. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1979, 4(9), 88.
V. V., Posnaya I. S.:
20b. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 400.
V. V., Posnaya I. S.:
21a. Acta Chim. Sin. 1978, 36, 315.
G.-M., Zhu A.:
21b. J. Wuhan Univ. (Nat. Sci. Ed.) 1981, (2), 101.
G., Zhue H., Qiang, D.:
22. Bull. Soc. Chim. Fr. 1984, 336.
A., Frange B.:
23. J. Electrochem. Soc. 1982, 129, 2213.
< J. W., Brody J. F.: https://doi.org/10.1149/1.2123477>
24. Z. Kristallogr. 2005, 220, 142.
< K., Albert B.: https://doi.org/10.1524/zkri.220.2.142.59144>
25. Z. Kristallogr. Suppl. 2001, 18, 88.
K., Albert B.:
26. Mater. Res. Bull. 1987, 22, 1259.
< H., Tsuzuki Y., Yogo T., Naka S.: https://doi.org/10.1016/0025-5408(87)90136-X>
27. Russ. J. Coord. Chem. 1992, 18, 332.
E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.:
28. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2010, 66, m1.
< T. B., Chen X., Lingam H. K., Huang Z., Meyers E. A., Shore S. G., Zhao J.-C.: https://doi.org/10.1107/S0108270109040815>
29. Russ. J. Inorg. Chem. 1991, 36, 1361.
E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.:
30. Z. Naturforsch., B: Chem. Sci. 2000, 55, 499.
< K., Albert B.: https://doi.org/10.1515/znb-2000-0610>
31. Russ. J. Coord. Chem. 1992, 18, 329.
E. A., Goeva L. V., Ivanov S. V., Solntsev K. A., Kuznetsov N. T.:
32. Chem. J. Chinese Univ. 1983, 4, 93.
D., Shan Z., Song J., Zhang G.:
33. Zh. Obshch. Khim. 1996, 66, 1195.
Yu. N., Yashina N. I., Markova O. Z., Porai-Koshits M. A., Katser S. B.:
34. J. Struct. Chem. 1994, 35, 339.
< A. V., Vakulenko N. N., Volkov V. V., Podberezskaya N. V.: https://doi.org/10.1007/BF02578286>
35. Russ. J. Inorg. Chem. 1996, 41, 1856.
A. M., Mustyatsa V. N., Goeva L. V., Katser S. B., Solntsev K. A., Kuznetsov N. T.:
36. Chem. Substainable Dev. 2000, 8, 109.
T. N., Orlova N. A., Shelkovnikov V. V., Ivanova Z. M., Markov R. V., Plekhanov A., Polyanskaya T. M., Volkov V. V.:
37. Russ. J. Inorg. Chem. 1994, 39, 1997.
E. A., Goeva L. V., Votinova N. A., Solntsev K. A., Kuznetsov N. T.:
38. Chem. J. Chinese Univ. 1982, 3, 351.
G., Zhu H., Ding Q.:
39. Chin. J. Appl. Chem. 1985, 2(1), 70.
G., Zhu H., Ding Q.:
40. Crystallogr. Rep. 2004, 49, 767.
< I. N., Mustyatsa V. N., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1134/1.1803303>
41. Russ. J. Inorg. Chem. 2008, 53, 197.
< E. A., Drozdova V. V., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1134/S0036023608020083>
42. Inorg. Chem. 1964, 3, 282.
< T. L., Naar-Colin C.: https://doi.org/10.1021/ic50012a035>
43. Z. Anorg. Allg. Chem. 2000, 626, 775.
< S., Folkepts H., Grebe J., Gröb T., Harms K., Hiller W., Krieger M., Massa W., Merle J., Möhlen M., Numüller B., Dehnicke K.: https://doi.org/10.1002/(SICI)1521-3749(200003)626:3<775::AID-ZAAC775>3.0.CO;2-H>
44. Russ. J. Inorg. Chem. 2001, 46, 1137.
E. A., Mustyatsa V. N., Goeva L. V., Fillipova T. V., Kuznetsov N. T.:
45. Russ. J. Coord. Chem. 2001, 27, 373.
< E. A., Mustyatsa V. N., Goeva L. V., Kuznetsov N. T.: https://doi.org/10.1023/A:1011380622894>
46. Russ. J. Inorg. Chem. 2009, 54, 1866.
< E. A., Drozdova M. K., Yureva O. P., Myakishev K. G., Volkov V. V.: https://doi.org/10.1134/S0036023609120031>
47. Z. Anorg. Allg. Chem. 2005, 631, 152.
< F., Albert B.: https://doi.org/10.1002/zaac.200400340>
48. Koord. Khim. 1992, 18, 387.
S. B., Malinina E. A., Mustyatsa V. N., Solntsev K. A., Kuznetsov N. T.:
49a. Aust. J. Chem. 1987, 40, 2097.
< D. J., Kepert D. L., Skelton B. W., White A. H.: https://doi.org/10.1071/CH9872097>
49b. Acta Crystallogr., Sect. B: Struct. Sci. 1989, 45, 290.
< C. T., Maslen E. N.: https://doi.org/10.1107/S0108768189001138>
50. Chin. J. Struct. Chem. 1982, 1, 45.
Y., Cai Z., Chen Z., Pan K., Lu J., Zhang G., Zhu H.:
51a. J. Chem. Phys. 1962, 37, 1779.
< R. D., Lipscomb W. N.: https://doi.org/10.1063/1.1733368>
51b. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 729.
< A., Dobrott R. D., Lipscomb W. N.: https://doi.org/10.1073/pnas.48.5.729>
52. Inorg. Chem. 1974, 13, 2772.
< T. E., Hawthorne M. F., Brown L. D., Lipscomb W. N.: https://doi.org/10.1021/ic50141a048>
53. J. Wuhan Univ. (Nat. Sci. Ed.) 1989, (2), 67.
L., Hu P., Zhang G.:
54. Zh. Neorg. Khim. 1993, 38, 38.
E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.:
55. Dokl. Chem. 2001, 378, 139.
< E. A., Zhizhin K. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1023/A:1019254503484>
56. Crystallogr. Rep. 2003, 48, 84.
< , I. N., Malinina E. A., Kuznetsov N. T.: https://doi.org/10.1134/1.1541748>
57a. Inorg. Chem. 1975, 14, 751.
< J. T., Lippard S. J.: https://doi.org/10.1021/ic50146a010>
57b. Inorg. Chem. 1976, 15, 1456.
< G. G., Brice V. T., Shore S. G.: https://doi.org/10.1021/ic50160a043>
58. Dokl. Chem. 2008, 418, 30.
< V. V., Malinina E. A., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1134/S001250080802002X>
59a. Russ. J. Inorg. Chem. 2003, 48, 811.
E. A., Zhizhin K. Yu., Mustyatsa V. N., Goeva L. V., Polyakova I. N., Kuznetsov N. T.:
59b. Malinina E., Polyakova I., Zhizhin K., Drozdova V., Goeva L., Kuznetsov N. in: Boron Chemistry at the Beginning of the 21st Century (Yu. N. Bubnov, Ed.), p. 136. Editorial URSS, Moscow 2003.
60. Russ. J. Inorg. Chem. 2002, 47, 1158.
E. A., Zhizhin K. Yu., Polyakova I. N., Lisovskii M. V., Kuznetsov N. T.:
61. Crystallogr. Rep. 2008, 53, 253.
< I. N., Malinina E. A., Drozdova V. V., Kuznetsov N. T.: https://doi.org/10.1007/s11445-008-2013-3>
62. Russ. J. Inorg. Chem. 2010, 55, 34.
< V. V., Malinina E. A., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1134/S0036023610010080>
63. J. Organomet. Chem. 2009, 694, 1704.
< V. N., Filippov O. A., Titov A. A., Krylova A. I., Sivaev I. B., Bregadze V. I., Pstein L. M., Shubina E. S.: https://doi.org/10.1016/j.jorganchem.2008.11.039>
64. Koord. Khim. 1989, 15, 1039.
E. A., Solntsev K. A., Butman L. A., Kuznetsov N. T.:
65. Zh. Neorg. Khim. 1983, 28, 2234.
Yu. L., Ustynyuk Yu. A., Borisenko A. A., Kuznetsov N. T.:
66. Chem. Eur. J. 2001, 7, 3783.
< E. S., Tikhonova I. A., Bakhmutova E. V., Dolgushin F. M., Antipin M. Yu., Bakhmutov V. I., Sivaev I. B., Teplitskaya L. N., Chizhevsky I. T., Pisareva I. V., Bregadze V. I., Epstein L. M., Shur V. B.: https://doi.org/10.1002/1521-3765(20010903)7:17<3783::AID-CHEM3783>3.0.CO;2-1>
67a. J. Am. Chem. Soc. 1993, 115, 4904.
< X., Knobler C. B., Hawthorne M. F.: https://doi.org/10.1021/ja00064a067>
67b. J. Am. Chem. Soc. 1994, 116, 7142.
< X., Knobler C. B., Zheng Z., Hawthorne M. F.: https://doi.org/10.1021/ja00095a018>
68. Russ. J. Inorg. Chem. 1983, 28, 89.
Yu. L., Kuznetsov N. T., Sukova L. M.:
69. Russ. J. Inorg. Chem. 1990, 35, 985.
A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T.:
70. Russ. J. Inorg. Chem. 1988, 33, 680.
A. G., Goeva L. V., Solntsev K. A., Kuznetsov N. T.:
71. Russ. J. Inorg. Chem. 1988, 33, 1007.
A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.:
72. Chem. J. Chinese Univ. 1985, 6, 872.
L., Huang Y., Chen X., He J.:
73. Chin. J. Org. Chem. 1984, 446.
L., Chen X., Li E., He J.:
74. Russ. J. Coord. Chem. 1997, 23, 771.
K. S., Gorbunov V. E., Malinina E. A., Solntsev K. A., Kuznetsov N. T.:
75. Russ. J. Inorg. Chem. 1988, 33, 1103.
A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.:
76. Russ. J. Inorg. Chem. 1988, 33, 1482.
A. G., Yakushev A. B., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.:
77. Chin. J. Org. Chem. 1983, 277.
L., Hu P., Zhang G.:
78. Russ. J. Coord. Chem. 2008, 34, 190.
< M. B., Lavrenova L. G., Shvedenkov Yu. G., Varnek V. A., Sheludyakova L. A., Vollkov V. V., Larionov S. V.: https://doi.org/10.1134/S107032840803007X>
79. J. Therm. Anal. 1985, 30, 365.
< Yu. N., Logvinenko V. A., Yashchina N. I., Pisarev E. A., Gavrilova G. V.: https://doi.org/10.1007/BF02156502>
80. Zh. Neorg. Khim. 1996, 41, 393.
A. M., Goeva L. V., Lagun V. L., Solntsev K. A., Kuznetsov N. T.:
81. Russ. J. Inorg. Chem. 2007, 52, 854.
< E. A., Drozdova V. V., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1134/S003602360706006X>
82. J. Wuhan Univ. (Nat. Sci. Ed.) 1987, (4), 75.
L., Ding Z., Zhang G.:
83. Chem. J. Chinese Univ. 1986, 7, 877.
L., Ding Z., Zhang G.:
84. Chem. J. Chin. Univ. 1988, 9, 954.
P., Zhang L., Liu X., Tan Z., Zhang G.:
85. Chin. J. Appl. Chem. 1984, 1(5), 40.
G., Xiong H., Zhang L.:
86. J. Chin. Rare Earth Soc. 1990, 301.
P., Zhang L.:
87a. Koord. Khim. 1981, 7, 232.
N. T., Zemskova L. A., Goeva L. V.:
87b. Russ. J. Inorg. Chem. 1981, 26, 15.
N. T., Zemskova L. A., Alikhanova Z. M., Ippolitov E. G.:
87c. Russ. J. Inorg. Chem. 1981, 26, 1003.
N. T., Zemskova L. A., Ippolitov E. G.:
87d. Zh. Neorg. Khim. 1982, 27, 2343.
Yu. N., Kanishcheva A. S., Zemskova L. A., Mistryukov V. E., Kuznetsov N. T., Solntsev K. A.:
88. J. Chem. Eng. Data 1975, 20, 384.
< W.-Y., Chen C. L.: https://doi.org/10.1021/je60067a014>
89. Russ. Chem. Bull. 2001, 50, 1115.
< I. B., Petrovskii P. V., Filin A. M., Shubina E. S., Bregadze V. I.: https://doi.org/10.1023/A:1011306410852>
90. J. Organomet. Chem. 2002, 657, 155.
< E. S., Bakhmutova E. V., Filin A. M., Sivaev I. B., Teplitskaya L. N., Chistyakov A. L., Stankevich I. V., Bakhmutov V. I., Bregadze V. I., Epstein L. M.: https://doi.org/10.1016/S0022-328X(02)01380-3>
91. Collect. Czech. Chem. Commun. 2007, 72, 1725.
< I. B., Bragin V. I., Prikaznov A. V., Petrovskii P. V., Bregadze V. I., Filippov O. A., Teplinskaya T. A., Titov A. A., Shubina E. S.: https://doi.org/10.1135/cccc20071725>
92. J. Am. Chem. Soc. 1973, 95, 7513.
< P. A., Adams D. M., Callabretta F. J., Spada L. T., Unger R. G.: https://doi.org/10.1021/ja00803a055>
93. Inorg. Chem. 2003, 42, 1175.
< S. G., Hamilton E. J. M., Bridges A. N., Bausch J., Krause-Bauer J. A., Dou D., Liu J., Liu S., Du B., Hall H., Meyers E. A., Vermillion K. E.: https://doi.org/10.1021/ic020540s>
94a. Dokl. Chem. 1988, 301, 245.
V. N., Votinova N. A., Solntsev K. A., Kuznetsov N. T.:
94b. Dokl. Chem. 1998, 358, 1.
V. N., Solntsev K. A., Sakharov, S. G., Kuznetsov N. T.:
95a. Russ. J. Coord. Chem. 2001, 27, 622.
< V. N., Votinova N. A., Goeva L. V., Zhizhin K. Yu., Malinina E. A., Kuznetsov N. T.: https://doi.org/10.1023/A:1017941303556>
95b. Inorg. Mater. 2004, 40, 144.
< L. I., Mustyatsa V. N., Zhizhin K. Yu., Belousova O. N., Kuznetsov N. T.: https://doi.org/10.1023/B:INMA.0000016088.12295.5b>
96a. Russ. J. Inorg. Chem. 1988, 33, 1292.
A. M., Charkin O. P., Solntsev K. A., Kuznetsov N. T.:
96b. Inorg. Chem. 1993, 32, 463.
< A. M., Charkin O. P., Bühl M., Schleyer P. v. R.: https://doi.org/10.1021/ic00056a020>
97a. Koord. Khim. 1991, 17, 640.
V. I., Solntsev K. A., Mustyatsa V. N., Kuznetsov N. T.:
97b. Russ. J. Coord. Chem. 1992, 18, 324.
V. I., Solntsev K. A., Mustyatsa V. N., Kuznetsov N. T.:
98. Dokl. Akad. Nauk SSSR 1978, 240, 342.
V. V., Myakishev K. G.:
99. Inorg. Chem. 1996, 35, 6914.
< S. V., Ivanova S. M., Miller S. M., Anderson O. P., Solntsev K. A., Strauss S. H.: https://doi.org/10.1021/ic961043c>
100. Collect. Czech. Chem. Commun. 1997, 62, 1310.
< S. V., Ivanova S. M., Miller S. M., Anderson O. P., Kuznetsov N. T., Solntsev K. A., Strauss S. H.: https://doi.org/10.1135/cccc19971310>
101. Collect. Czech. Chem. Commun. 1969, 34, 194.
< B., Plešek J., Heřmánek S.: https://doi.org/10.1135/cccc19690194>
102. Inorg. Chem. 1964, 3, 159.
< W. H., Miller H. C., Sauer J. C., Balthis J. H., Chia Y. T., Mietterties E. L.: https://doi.org/10.1021/ic50012a002>
103a. Angew. Chem., Int. Ed. Engl. 1977, 16, 173.
< K.-G., Preetz W.: https://doi.org/10.1002/anie.197701731>
103b. J. Chromatogr. 1977, 139, 291.
< K.-G., Preetz W.: https://doi.org/10.1016/S0021-9673(00)89323-1>
104. Z. Naturforsch., B: Chem. Sci. 1984, 39, 6.
< W., Srebny H.-G., Marsmann H. C.: https://doi.org/10.1515/znb-1984-0103>
105. Z. Anorg. Allg. Chem. 2002, 628, 258.
< W., Vaas K., Wieloch C., Speiser B., Wizemann T., Ströbele M., Meyer H.-J.: https://doi.org/10.1002/1521-3749(200201)628:1<258::AID-ZAAC258>3.0.CO;2-X>
106. Russ. J. Inorg. Chem. 2007, 52, 996.
< V. V., Zhizhin K. Yu., Malinina E. A., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1134/S0036023607070042>
107. Russ. Chem. Bull. 2010, 59, 550.
< V. M., Matveev E. Yu., Lisovskii M. V., Razgonyaeva G. A., Ochertyanova L. I., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1007/s11172-010-0123-2>
108. Inorg. Chem. 1974, 13, 1760.
< Z. B., Young C., Dickerson R., Lai K. K., Kaczmarczyk A.: https://doi.org/10.1021/ic50137a046>
109. J. Wuhan Univ. (Nat. Sci. Ed.) 1985, (2), 59.
L., Hu P., Xiang J., Zhang G.:
110. Russ. J. Inorg. Chem. 1981, 26, 699.
Yu. L., Kuznetsov N. T.:
111. Russ. J. Inorg. Chem. 1980, 25, 726.
Yu. L., Zakharova I. A., Kuznetsov N. T.:
112. Zh. Neorg. Khim. 1996, 41, 796.
A. M., Goeva L. V., Solntsev K. A., Kuznetsov N. T.:
113. Zh. Neorg. Khim. 1982, 27, 1320.
N. T., Zemskova L. A.:
114. Z. Anorg. Allg. Chem. 1995, 621, 1632.
< W., Nachtigal C.: https://doi.org/10.1002/zaac.19956211003>
115. Inorg. Chem. 1972, 11, 369.
< F. E., Lipscomb W. N.: https://doi.org/10.1021/ic50108a033>
116. J. Electrochem. Soc. 1982, 129, 1249.
< W.: https://doi.org/10.1149/1.2124096>
117. J. Electrochem. Soc. 1985, 132, 119.
< M. W., Foos J. S., Brummer S. B.: https://doi.org/10.1149/1.2113739>
118a. Inorg. Chim. Acta 1981, 47, 181.
< I. A., Gaft Yu. L., Kuznetsov N. T., Salyn Ya. V., Leites L. A., Kurbakova A. P., Kagansky M. M.: https://doi.org/10.1016/S0020-1693(00)89327-5>
118b. Inorg. Chim. Acta 1980, 45, L257.
< G. A., Sergienko V. S., Gaft Yu. L., Zakharova I. A., Porai-Koshits M. A.: https://doi.org/10.1016/S0020-1693(00)80166-8>
119. Angew. Chem., Int. Ed. Engl. 1977, 16, 398.
< K.-G., Preetz W.: https://doi.org/10.1002/anie.197703981>
120. Zh. Obshch. Khim. 2001, 71, 1082.
L. I., Guseva V. V., Petrovskii P. V.:
121a. Inorg. Chem. 1974, 13, 163.
< A. P., Middaugh R. L.: https://doi.org/10.1021/ic50131a031>
121b. Inorg. Chem. 1974, 13, 744.
< R. L.: https://doi.org/10.1021/ic50133a049>
122. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52, 453.
< C., Preetz W.: https://doi.org/10.1107/S0108270195012340>
123. Inorg. Chem. 1992, 31, 2889.
< K., Knobler C. B., Hawthorne M. F.: https://doi.org/10.1021/ic00039a041>
124. Inorg. Chem. 1965, 4, 288.
< W. R., Knoth W. H., Muetterties E. L.: https://doi.org/10.1021/ic50025a005>
125a. J. Am. Chem. Soc. 1964, 86, 115.
< W. H, Sauer J. C., Miller H. C., Muetterties E. L.: https://doi.org/10.1021/ja01055a027>
125b. J. Am. Chem. Soc. 1966, 88, 935.
< W. H.: https://doi.org/10.1021/ja00957a013>
126. Organometallics 1985, 4, 207.
< W. R.: https://doi.org/10.1021/om00120a039>
127. J. Am. Chem. Soc. 1967, 89, 4842.
< W. R., Sauer J. C., Balthis J. H., Miller H. C., Muetterties E. L.: https://doi.org/10.1021/ja00995a004>
128. Russ. J. Inorg. Chem. 2005, 50, 20.
M. V., Plyavnik N. V., Serebrennikova G. A., Zhizhin K. Yu., Malinina E. A., Kuznetsov N. T.:
129a. Bioconjugate Chem. 2007, 18, 1226.
< D. S., Hamlin D. K., Chyan M.-K., Vessella R. L., Wedge T. J., Hawthorne M. F.: https://doi.org/10.1021/bc060345s>
129b. Bioconjugate Chem. 2008, 19, 158.
< D. S., Hamlin D. K., Chyan M.-K., Brechbiel M. W.: https://doi.org/10.1021/bc7002428>
129c. Bioconjugate Chem. 2009, 20, 1983.
< D. S., Thakar M. S., Hamlin D. K., Santos E. B., Chyan M.-K., Nakamae H., Pagel J. M., Press O. W., Sandmaier B. M.: https://doi.org/10.1021/bc9000799>
130. Nucl. Med. Biol. 2010, 37, 167.
< D. S., Chyan M.-K., Hamlin D. K., Perry M. A.: https://doi.org/10.1016/j.nucmedbio.2009.10.004>
131. J. Med. Chem. 1966, 9, 581.
< F., Soloway A. H., Butler D. N.: https://doi.org/10.1021/jm00322a031>
132. J. Med. Chem. 1989, 32, 2326.
< F., Soloway A. H., Barth R. F., Mafune N., Adams D. M., Knoth W. H.: https://doi.org/10.1021/jm00130a017>
133. J. Am. Chem. Soc. 1964, 86, 2949.
< W. R.: https://doi.org/10.1021/ja01068a047>
134. Inorg. Chem. 1967, 6, 1977.
< W. H., Miller N. E., Hertler W. R.: https://doi.org/10.1021/ic50057a008>
135. J. Am. Chem. Soc. 1964, 86, 5434.
< W. R., Knoth W. H., Muetterties E. L.: https://doi.org/10.1021/ja01078a015>
136. J. Am. Chem. Soc. 1966, 88, 1899.
< S.: https://doi.org/10.1021/ja00961a010>
137. J. Am. Chem. Soc. 1967, 89, 4850.
< W. H.: https://doi.org/10.1021/ja00995a005>
138. J. Am. Chem. Soc. 1962, 84, 1056.
< W. H., Miller H. C., England D. C., Parshall G. W., Muetterties E. L.: https://doi.org/10.1021/ja00865a040>
139. J. Am. Chem. Soc. 1964, 86, 3973.
< W. H., Sauer J. C., England D. C., Hertler W. R., Muetterties E. L.: https://doi.org/10.1021/ja01073a015>
140a. J. Am. Chem. Soc. 1964, 86, 5036.
< K. M., Harmon A. B., MacDonald A. A.: https://doi.org/10.1021/ja01076a083>
140b. J. Am. Chem. Soc. 1966, 88, 4093.
< K. M., Harmon A. B.: https://doi.org/10.1021/ja00969a038>
140c. J. Am. Chem. Soc. 1969, 91, 323.
< K. M., Harmon A. B., MacDonald A. A.: https://doi.org/10.1021/ja01030a020>
140d. J. Mol. Struct. 1995, 350, 135.
< K. M., Nelson T. E., Stachowski B. M.: https://doi.org/10.1016/0022-2860(94)08467-V>
141. J. Mol. Struct. 2002, 607, 181.
< K. M., Gill S. H.: https://doi.org/10.1016/S0022-2860(01)00916-4>
142. Inorg. Chem. 1980, 19, 1182.
< E. I., Mizusawa E., Becker D. S., Venzel J.: https://doi.org/10.1021/ic50207a014>
143. J. Med. Chem. 1969, 12, 54.
< K. C., Kaczmarczyk A., Soloway A. H.: https://doi.org/10.1021/jm00301a015>
144. Z. Naturforsch., B: Chem. Sci. 1996, 51, 1559.
< C., Preetz W.: https://doi.org/10.1515/znb-1996-1104>
145. Inorg. Chem. 1965, 4, 280.
< W. H., Hertler W. R., Muetterties E. L.: https://doi.org/10.1021/ic50025a004>
146. J. Chem. Soc., Dalton Trans. 1982, 2469.
< T., Brint P., Spalding T. R., McDonald W. S., Lloyd D. R.: https://doi.org/10.1039/dt9820002469>
147a. J. Am. Chem. Soc. 1964, 86, 4219.
< M. F., Olsen F. P.: https://doi.org/10.1021/ja01073a079>
147b. J. Am. Chem. Soc. 1965, 87, 2366.
< M. F., Olsen F. P.: https://doi.org/10.1021/ja01089a012>
148. Inorg. Chem. 1973, 12, 2091.
< A. R., Bodner G. M.: https://doi.org/10.1021/ic50127a029>
149. J. Med. Chem. 1974, 17, 785.
< H. S., Tolpin E. I., Lipscomb W. N.: https://doi.org/10.1021/jm00254a001>
150. Zh. Obshch. Khim. 1990, 60, 2737.
L. I., Pisareva I. V., Sulaimankulova D. D., Antonovich V. A.:
151. Organomet. Chem. USSR 1990, 3, 466.
L. I., Sulaimankulova D. D., Pisareva I. V.:
152a. J. Am. Chem. Soc. 1973, 95, 2032.
< R. N., Hawthorne M. F.: https://doi.org/10.1021/ja00787a063>
152b. Inorg. Chem. 1975, 14, 2444.
< R. N., Hawthorne M. F.: https://doi.org/10.1021/ic50152a030>
153. Inorg. Chem. 1991, 30, 4278.
< L.-L., Ng B. K., Shelly K., Knobler C. B., Hawthorne F. M.: https://doi.org/10.1021/ic00022a034>
154. Appl. Organometal. Chem. 2003, 17, 244.
< D., Bonnetot B., Mongeot H.: https://doi.org/10.1002/aoc.424>
155. Polyhedron 1999, 18, 931.
< D., Grüner B., Bonnetot B., Mongeot H.: https://doi.org/10.1016/S0277-5387(98)00354-4>
156. J. Organomet. Chem. 2005, 690, 2847.
< V. I., Sivaev I. B., Bregadze V. I., Votinova N. A.: https://doi.org/10.1016/j.jorganchem.2005.01.053>
157. J. Am. Chem. Soc. 1972, 94, 104.
< W. H.: https://doi.org/10.1021/ja00756a020>
158. Inorg. Chem. 1977, 16, 3287.
< K. D., Ibers J. A.: https://doi.org/10.1021/ic50178a060>
159. J. Am. Chem. Soc. 1964, 86, 3661.
< W. R., Raasch M. S.: https://doi.org/10.1021/ja01072a014>
160. J. Organomet. Chem. 2002, 657, 163.
< I. B., Votinova N. A., Bragin V. I., Starikova Z. A., Goeva L. V., Bregadze V. I., Sjöberg S.: https://doi.org/10.1016/S0022-328X(02)01419-5>
161. Z. Anorg. Allg. Chem. 1997, 623, 1385.
< C., Haeckel O., Preetz W.: https://doi.org/10.1002/zaac.19976230911>
162. Inorg. Chem. 1964, 3, 1195.
< W. R.: https://doi.org/10.1021/ic50018a030>
163. Russ. J. Inorg. Chem. 2006, 51, 1552.
< V. V., Lisovskii M. V., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1134/S003602360610007X>
164. Chem. Pharm. Bull. 1976, 24, 778.
< T., Aono K.: https://doi.org/10.1248/cpb.24.778>
165. Russ. Chem. Bull. 2004, 53, 2092.
< I. B., Bragin V. I., Bregadze V. I., Votinova N. A., Sjöberg S.: https://doi.org/10.1007/s11172-005-0079-9>
166. Inorg. Chem. 1965, 4, 1216.
< H. C., Hertler W. R., Muetterties E. L., Knoth W. H., Miller N. E.: https://doi.org/10.1021/ic50030a028>
167. Inorg. Chem. 1994, 33, 6432.
< D., Mavunkal I. J., Krause Bauer J. A., Knobler C. B., Hawthorne M. F., Shore S. G.: https://doi.org/10.1021/ic00104a069>
168a. Russ. J. Inorg. Chem. 2003, 48, 671.
K. Yu., Mustyatsa V. N., Matveev E. Yu., Drozdova V. V., Votinova N. A., Polyakova I. N., Kuznetsov N. T.:
168b. Zhizhin K., Mustyatsa V., Votinova N., Polyakova I., Matveev E., Kuznetsov N. in: Boron Chemistry at the Beginning of the 21st Century (Yu. N. Bubnov, Ed.), p. 151. Editorial URSS, Moscow 2003.
169. Russ. Chem. Bull. 2009, 58, 1694.
< A. P., Lisovsky M. V., Goeva L. V., Razgonyaeva G. A., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1007/s11172-009-0234-9>
170a. Chin. J. Inorg. Chem. 1990, 6, 130.
P., Zhang L., Liu Y., Zhang G.:
170b. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1989, 45, 294.
< U., Chu S. S. C., Hosmane N. S., Zhang G., Zhu W., Zhu H.: https://doi.org/10.1107/S0108270188011436>
171. Crystallogr. Rep. 2007, 52, 271.
< I. N., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1134/S1063774507020186>
172. Inorg. Chem. 1974, 13, 2316.
< A. H., Kaczmarczyk A.: https://doi.org/10.1021/ic50140a005>
173. Bull. Soc. Chim. Fr. 1983, 70.
H., Atchekzai J.:
174. J. Am. Chem. Soc. 1963, 85, 2725.
< R. A.: https://doi.org/10.1021/ja00901a011>
175a. Z. Anorg. Allg. Chem. 1996, 622, 2057.
< C., Preetz W.: https://doi.org/10.1002/zaac.19966221210>
175b. Z. Anorg. Allg. Chem. 1997, 623, 683.
< C., Preetz W.: https://doi.org/10.1002/zaac.199762301108>
175c. Z. Anorg. Allg. Chem. 1998, 624, 327.
< C., Preetz W.: https://doi.org/10.1002/(SICI)1521-3749(199802)624:2<327::AID-ZAAC327>3.0.CO;2-8>
176a. J. Am. Chem. Soc. 1969, 91, 194.
< C. H., Lipscomb W. N.: https://doi.org/10.1021/ja01029a038>
176b. Inorg. Chem. 1971, 10, 160.
C. H., Lipscomb W. N.:
177. Z. Anorg. Allg. Chem. 1997, 623, 1489.
< C., Preetz W.: https://doi.org/10.1002/zaac.19976230926>
178. Inorg. Chem. 1994, 33, 5620.
< S. A., Jones R. B., Mattern J., Huffman J. C., Todd L. J.: https://doi.org/10.1021/ic00103a005>
179a. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, IUC9800008.
< H.-J., Hu C.-H., Dou J.-M., Sun J., Wei J.-D., Huang, Z.-E., Jin R. S., Zheng P.-J.: https://doi.org/10.1107/S0108270198099764>
179b. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999, 55, IUC9900033.
< H.-J., Hu C.-H., Dou J.-M., Sun J., Jin R. S., Zheng P.-J.: https://doi.org/10.1107/S0108270199099576>
180. Collect. Czech. Chem. Commun. 1999, 64, 856.
< D., Bonnetot B., Mongeot H., Grüner B.: https://doi.org/10.1135/cccc19990856>
181. Russ. J. Inorg. Chem. 2005, 50, 29.
K. Yu., Mustyatsa V. N., Malinina E. A., Polyakova I. N., Kuznetsov N. T.:
182. Collect. Czech. Chem. Commun. 2007, 72, 1689.
< A. V., Bragin V. I., Davydova M. N., Sivaev I. B., Bregadze V. I.: https://doi.org/10.1135/cccc20071689>
183. Russ. J. Coord. Chem. 2001, 27, 613.
< K. Yu., Vovk O. O., Malinina E. A., Mustyatsa V. N., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: https://doi.org/10.1023/A:1017937102647>
184a. Russ. J. Inorg. Chem. 2002, 47, 1158.
K. Yu., Malinina E. A., Polyakova I. N., Lisovskii M. V., Kuznetsov N. T.:
184b. Zhizhin K., Mustyatsa V., Polyakova I., Lisovskii M., Kuznetsov N. in: Boron Chemistry at the Beginning of the 21st Century (Yu. N. Bubnov, Ed.), p. 146. Editorial URSS, Moscow 2003.
185. Acta Chim. Sin. 1990, 48, 820.
Y.-X., Ding H.-X., Lu H.-M.:
186. Russ. J. Inorg. Chem. 2004, 49, 180.
K. Yu., Mustyatsa V. N., Malinina E. A., Votinova N. A., Matveev E. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.:
187. Russ. Chem. Bull. 2010, 59, 371.
< S. S., Matveev E. Yu., Razgonyaeva G. A., Ochertyanova L. I., Votinova N. A., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1007/s11172-010-0088-1>
188. J. Organomet. Chem. 2004, 689, 2581.
< R., Cornu D., Perrin M., Scharff J.-P., Miele P.: https://doi.org/10.1016/j.jorganchem.2004.05.014>
189a. Dalton Trans. 2008, 977.
< A. A., Sivaev I. B., Bregadze V. I.: https://doi.org/10.1039/b715363e>
189b. Appl. Radiat. Isot. 2009, 67, S91.
< I. B., Semioshkin A. A., Bregadze V. I.: https://doi.org/10.1016/j.apradiso.2009.03.022>
190. Russ. J. Inorg. Chem. 2005, 50, 203.
K. Yu., Mustyatsa V. N., Malinina E. A., Matveev E. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.:
191. Prikaznov A. V., Sivaev I. B., Bregadze V. I., Kisin A. V.: Presented at Young Researchers BNCT Meeting, Mainz, 2009.
192. Russ. Chem. Bull. 2010, 59, 556.
< E. Yu., Razgonyaeva G. A., Mustyatsa V. N., Votinova N. A., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1007/s11172-010-0125-0>
193a. Voloshin Ya. Z., Varzatskii O. A., Zhizhin K. Yu., Kuznetsov N. T.: Presented at XXIII Chugaev Int. Conf. Coord. Chem., Odessa (Ukraine), 2007.
193b. Russ. Chem. Bull. 2007, 56, 577.
< Ya. Z., Varsatskii O. A., Bubnov Yu. N.: https://doi.org/10.1007/s11172-007-0100-6>
194. J. Chem. Soc., Dalton Trans. 1987, 1953.
< M., Nakai H., Shiro M.: https://doi.org/10.1039/dt9870001953>
195. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43, 1420.
< H., Komura M., Shiro M.: https://doi.org/10.1107/S0108270187091649>
196. Collect. Czech. Chem. Commun. 2002, 67, 1007.
< H. D., Ulrich B. D., Kultyshev R. G., Liu J., Liu S., Meyers E. A., Greau S., Shore S. G.: https://doi.org/10.1135/cccc20021007>
197. Pure Appl. Chem. 2006, 78, 1341.
< S. G., Hamilton E. J. M., Kultyshev R. G., Leung H. T., Yisgedu T.: https://doi.org/10.1351/pac200678071341>
198. J. Med. Chem. 1974, 17, 796.
< R. L., Soloway A. H., Dey A. S.: https://doi.org/10.1021/jm00254a003>
199. J. Med. Chem. 1976, 19, 1290.
< R. L., Wright J. E., Soloway A. H., O’Keefe S. M., Dey A. S., Smolnycki W. D.: https://doi.org/10.1021/jm00233a007>
200. J. Pharm. Sci. 1976, 65, 604.
< P. M., Sneath R. L., Soloway A. H., Dey A. S.: https://doi.org/10.1002/jps.2600650433>
201. Russ. J. Coord. Chem. 1993, 19, 116.
A. M., Sivaev I. B., Lagun V. L., Katser S. B., Solntsev K. A., Kuznetsov N. T.:
202. Z. Anorg. Allg. Chem. 1984, 513, 7.
< H.-G., Preetz W.: https://doi.org/10.1002/zaac.19845130602>
203a. Z. Anorg. Allg. Chem. 1997, 623, 347.
< C., Preetz W.: https://doi.org/10.1002/zaac.19976230155>
203b. Z. Anorg. Allg. Chem. 1996, 622, 509.
< C., Preetz W.: https://doi.org/10.1002/zaac.19966220320>
204. Chem. Ber. 1996, 129, 1531.
< C., Steuer B., Preetz W.: https://doi.org/10.1002/cber.19961291220>
205. Z. Naturforsch., B: Chem. Sci. 1996, 51, 1061.
< C., Preetz W.: https://doi.org/10.1515/znb-1996-0801>
206. Z. Naturforsch., B: Chem. Sci. 1997, 52, 975.
< C., Preetz W.: https://doi.org/10.1515/znb-1997-0815>
207. Dokl. Chem. 2007, 414, 137.
< E. A., Drozdova V. V., Bykov A. Yu., Belousova O. N., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: https://doi.org/10.1134/S0012500807060018>
208. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 729.
< A., Dobrott R. D., Lipscomb W. N.: https://doi.org/10.1073/pnas.48.5.729>
209. Inorg. Chem. 1964, 3, 1450.
< B. L., Muetterties E. L.: https://doi.org/10.1021/ic50020a025>
210. J. Am. Chem. Soc. 1963, 85, 3704.
M. F., Pilling R. L., Stokely P. F., Garrett P. M.:
211. Inorg. Chem. 1997, 36, 5419.
< R. A., Hawthorne M. F.: https://doi.org/10.1021/ic970279t>
212. J. Am. Chem. Soc. 1966, 88, 4147.
< R. L., Farha F.: https://doi.org/10.1021/ja00970a006>
213. J. Am. Chem. Soc. 1965, 87, 1893.
< M. F., Pilling R. L., Stokely P. F.: https://doi.org/10.1021/ja01087a011>
214. J. Am. Chem. Soc. 1966, 35, 2963.
R. A., Knobler C. B., Hawthorne M. F.:
215. Angew. Chem., Int. Ed. Engl. 1998, 37, 1865.
< F., Shelly K., Knobler C. B., Hawthorne M. F.: https://doi.org/10.1002/(SICI)1521-3773(19980803)37:13/14<1865::AID-ANIE1865>3.0.CO;2-G>
216. J. Am. Chem. Soc. 1966, 88, 3873.
< M. F., Pilling R. L.: https://doi.org/10.1021/ja00968a044>
217. Chem. Commun. 2002, 547.
< M. F., Shelly K., Li F.: https://doi.org/10.1039/b110076a>
218. J. Am. Chem. Soc. 1967, 89, 3361.
< M. D., Hunt R. M., Hefferan G. T., Adams R. M., Makhlouf J. M.: https://doi.org/10.1021/ja00989a054>
219. Acta Chim. Sin. 1981, 39, 251.
G., Lu Y., Huang X., Dai L.:
220. Bull. Soc. Chim. Fr. 1987, 75.
H., Atchekzai J., Bonnetot B., Colombier M.:
221. Collect. Czech. Chem. Commun. 1997, 62, 1273.
< B., Miele P., Naoufal D., Mongeot H.: https://doi.org/10.1135/cccc19971273>
222. Inorg. Chem. 2008, 47, 8580.
< W. C., Carroll P. J., Sneddon L. G.: https://doi.org/10.1021/ic801288e>
223. J. Am. Chem. Soc. 1992, 114, 4427.
< M. F., Mavunkal I. J., Knobler C. B.: https://doi.org/10.1021/ja00037a074>
224. J. Organomet. Chem. 2005, 690, 2787.
< D., Kodeih M., Cornu D., Miele P.: https://doi.org/10.1016/j.jorganchem.2005.01.041>
225. Inorg. Chim. Acta 1985, 105, L15.
< B., Tangi A., Colombier M., Mongeot H. : https://doi.org/10.1016/S0020-1693(00)85221-4>
226. Main Group Met. Chem. 1999, 22, 127.
< D., Grüner B., Bonnetot B., Mongeot H.: https://doi.org/10.1515/MGMC.1999.22.2.127>
227. Inorg. Chem. 1975, 14, 1604.
< T. E., Hawthorne M. F.: https://doi.org/10.1021/ic50149a034>
228a. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, 1835.
< C.-H., Dou J.-M., Yao H.-J., Wei J.-D., Jin R.-S., Sun J., Zheng P.-J.: https://doi.org/10.1107/S0108270198010452>
228b. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 897.
< Y., Hu C.-H., Li X., Yong W., Dou J.-M., Sun J., Jin R.-S., Zheng P.-J.: https://doi.org/10.1107/S0108270101007788>
228c. Chin. J. Chem. 2001, 19, 1162.
< W., Hu C.-H., Dou J.-M., Sun J., Hu K.-J., Jin R. S., Zheng P.-J.: https://doi.org/10.1002/cjoc.20010191127>
228d. Chin. J. Chem. 2002, 20, 536.
< C. H., Yong W., Dou J.-M., Sun J., Hu K.-J., Jin R.-S., Zheng P.-J.: https://doi.org/10.1002/cjoc.20020200603>
228e. Eur. J. Inorg. Chem. 2005, 63.
< J., Wu L., Guo Q., Li D., Wang D.: https://doi.org/10.1002/ejic.200400731>
228f. Appl. Organometal. Chem. 2005, 19, 1168.
< J., Wu L., Guo Q., Li D., Wang D., Hu C., Zheng P.: https://doi.org/10.1002/aoc.990>
228g. Acta Chim. Sin. 2005, 63, 1087.
J.-M., Wu L.-B., Guo Q.-L., Li D.-C., Wang D.-Q., Hu C.-H., Zheng P.-J.:
228h. Indian J. Chem., Sect. A: Inorg. Bio-inorg. Phys., Theor. Anal. Chem. 2006, 45, 1840.
L.-B., Dou J.-M., Guo Q.-L., Li D.-C., Wang D.-Q.:
228i. Chin. J. Struct. Chem. 2009, 28, 120.
Y., Chen H.-Y., Miao J.-L., Wang D.-Q., Sun G.-X., Dou J.-M.:
229a. Polyhedron 1984, 3, 901.
< J. E., Erlington M., Greenwood N. N., Kennedy J. D., Woollins J. D.: https://doi.org/10.1016/S0277-5387(00)84643-4>
229b. J. Chem. Soc., Dalton Trans. 1985, 2407.
< J. E., Erlington M., Greenwood N. N., Kennedy J. D., Thotnton-Pett M., Woollins J. D.: https://doi.org/10.1039/dt9850002407>
229c. J. Chem. Soc., Dalton Trans. 1987, 2781.
< M., Fontaine X. L. R., Greenwood N. N., MacKinnon P., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1039/dt9870002781>
229d. J. Chem. Soc., Chem. Commun. 1987, 1717.
< X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M., Zheng P.: https://doi.org/10.1039/c39870001717>
229e. J. Chem. Soc., Chem. Commun. 1987, 442.
< M., Fontaine X. L. R., Greenwood N. N., MacKinnon P., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1039/c39870000442>
229f. J. Chem. Soc., Dalton Trans. 1988, 925.
< M., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M: https://doi.org/10.1039/dt9880000925>
230a. Chin. J. Struct. Chem. 1997, 16, 258.
C.-H., Yao H.-J., Jin R.-S., Zheng P.-J.:
230b. Polyhedron 1997, 17, 1877.
< H.-J., Hu C.-H, Dou J. M., Wei J.-D., Jin R.-S., Li W., Zheng P. J.: https://doi.org/10.1016/S0277-5387(97)00523-8>
230c. Chin. J. Struct. Chem. 1998, 17, 13.
H.-J., Li W., Hu C.-H., Dou J.-M., Jin R.-S., Huang Z.-E., Zheng P.-J.:
230d. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999, 55, 1224.
< Y., Hu C.-H, Sun J., Jin R.-S., Zheng P.-J.: https://doi.org/10.1107/S010827019900462X>
230e. Chin. J. Struct. Chem. 1999, 18, 378.
X., Yao H.-J., Hu C.-H., Dou J.-M, Sun J., Jin R.-S., Zheng P.-J.:
230f. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, 56, 536.
< Y., Hu C.-H., Wu Q.-J., Lu S.-F., Jin R.-S., Zheng P.-J.: https://doi.org/10.1107/S0108270100001207>
230g. Chin. J. Chem. 2006, 24, 1741.
< Q.-L., Dou J.-M., Wu L.-B., Li D.-C., Wang D.-Q.: https://doi.org/10.1002/cjoc.200690326>
231. J. Chem. Soc., Dalton Trans. 1986, 2277.
M., Greenwood N. N., Kennedy J. D., Thornton-Pett M.:
232a. J. Chem. Soc., Dalton Trans. 1986, 517.
< H., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1039/dt9860000517>
232b. J. Chem. Soc., Dalton Trans. 1987, 2417.
< X. L. R., Fowkes H., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: https://doi.org/10.1039/dt9870002417>
233. J. Am. Chem. Soc. 1978, 100, 3758.
< R. N., Sullivan B. P., Baher R. T., Hawthorne M. F.: https://doi.org/10.1021/ja00480a017>
234a. Polyhedron 1997, 16, 2323.
< J.-M., Hu C.-H., Li W., Yao H.-J., Jin R.-S., Zheng P.-J.: https://doi.org/10.1016/S0277-5387(96)00591-8>
234b. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, 1418.
< J.-M., Hu C.-H., Gu J.-M., Nie Y., Yao H.-J., Jin R.-S., Zheng P.-J.: https://doi.org/10.1107/S0108270198004077>
234c. Chin. J. Struct. Chem. 1999, 18, 326.
J.-M., Hu C.-H., Yao H.-J., Jin R.-S., Zheng P.-J.:
234d. Acta Chim. Sin. 2002, 60, 1993.
J.-M., Hu C.-H., Yao H. J., Li Y.-S., Jin R.-S., Zheng P.-J.:
234e. Acta Chim. Sin. 2003, 61, 1006.
J.-M., Hu C.-H., Yao H.-J., Li Y.-S., Sun J., Jin R.-S., Zheng P.-J.:
235. J. Propul. Power 1998, 14, 981.
< M. A.: https://doi.org/10.2514/2.5363>
236. J. Pharmacol. Exp. Ther. 1962, 137, 263.
W. H., Soloway A. N., Wright R. L.:
237a. Angew. Chem., Int. Ed. Engl. 1993, 32, 950.
< M. F.: https://doi.org/10.1002/anie.199309501>
237b. Chem. Rev. 1998, 98, 1515.
< A. H., Tjarks W., Barnum B. A., Rong F.-G., Barth R. F., Codogni I. M., Wilson J. G.: https://doi.org/10.1021/cr941195u>
237c. Eur. J. Inorg. Chem. 2009, 1433.
< I. B., Bregadze V. I.: https://doi.org/10.1002/ejic.200900003>
238a. Collect. Czech. Chem. Commun. 2002, 67, 1061.
< P., Pakhomov S., Young V. G.: https://doi.org/10.1135/cccc20021061>
238b. Kaszynsky P.: Anisotropic Organic Materials. ACS Symp. Ser. 2001, 798, 68.
239. J. Appl. Phys. 2007, 102, 033108.
< A., Samoc A., Samoc M., Kaszynski P.: https://doi.org/10.1063/1.2767868>
240. J. Radioanal. Nucl. Chem. 2005, 266, 145.
< D., Grüner B., Selucky P., Bonnetot B., Mongeot H.: https://doi.org/10.1007/s10967-005-0886-3>
241. J. Electrochem. Soc. 1980, 127, 1653.
< J. W., Whittingham M. S.: https://doi.org/10.1149/1.2129971>
242. Inorg. Chem. 2009, 48, 889.
< M., Seddon K. R., Teixidor F., Puga A. V., Viñas C.: https://doi.org/10.1021/ic801448w>