Collect. Czech. Chem. Commun. 2010, 75, 145-164
https://doi.org/10.1135/cccc2009102
Published online 2010-02-16 10:23:42

A molecular simulation study of adsorption of nitrogen and methane in titanium silicate (ETS-4)

Flor R. Sipersteina, Martin Lísalb,c,* and John K. Brennand

a School of Chemical Engineering & Analytical Science, The University of Manchester, PO Box 88, Sackville Street, Manchester M60 1QD, UK
b Department of Physics, Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic
c E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 135, 165 02 Prague 6-Suchdol, Czech Republic
d U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005-5066, USA

References

1. Noble R. D., Agrawal R.: Ind. Eng. Chem. Res. 2005, 44, 2887. <https://doi.org/10.1021/ie0501475>
2. Yang R. T.: Adsorbents: Fundamentals and Applications. Wiley Interscience, Hoboken (NJ) 2003.
3. The Share of Renewable Energy in the EU Country Profiles. Overview of Renewable Energy Sources in the Enlarged European Union. Commission of the European Communities, Brussels 26/05/2004.
4. Knaebel K. S., Reinhold H. E.: Adsorption 2003, 9, 87. <https://doi.org/10.1023/A:1023871415711>
5. Kuznicki S. M., Bell V. A., Nair S., Hillhouse H. W., Jacubinas R. M., Braunbarth C. M., Toby B. H., Tsapatsis M.: Nature 2001, 412, 720. <https://doi.org/10.1038/35089052>
6. Kuznicki S. M., Bell V. A., Petrovic I., Desai B. T.: U.S. 6,068,682, 2000.
7. Ackley M. W., Yang R. T.: AIChE J. 1991, 37, 1645. <https://doi.org/10.1002/aic.690371107>
8. Jayaraman A., Hernandez-Maldonado A. J., Yang R. T., Chinn D., Munson C. L., Mohr D. H.: Chem. Eng. Sci. 2004, 59, 2407. <https://doi.org/10.1016/j.ces.2003.10.030>
9. Jayaraman A., Yang R. T., Chinn D., Munson C. L.: Ind. Eng. Chem. Res. 2005, 44, 5184. <https://doi.org/10.1021/ie0492855>
10. Maitland G. C., Rigby M., Smith E. B., Wakeham W. A.: Intermolecular Forces: Their Origin and Determination. Oxford University Press, Oxford 1981.
11. Vrabec J., Stoll J., Hasse H.: J. Phys. Chem. B 2001, 105, 12126. <https://doi.org/10.1021/jp012542o>
12. Cruciani G., De Luca P., Nastro A., Pattison P.: Microporous Mesoporous Mater. 1998, 21, 143. <https://doi.org/10.1016/S1387-1811(97)00051-6>
13. Philippou A., Anderson M. W.: Zeolites 1996, 16, 98. <https://doi.org/10.1016/0144-2449(95)00107-7>
14. Nair S., Jeong H. K., Chandrasekaran A., Braunbarth C. M., Tsapatsis M., Kuznicki S. M.: Chem. Mater. 2001, 13, 4247. <https://doi.org/10.1021/cm0103803>
15. Braunbarth C., Hillhouse H. W., Nair S., Tsapatsis M., Burton A., Lobo R. F., Jacubinas R. M., Kuznicki S. M.: Chem. Mater. 2000, 12, 1857. <https://doi.org/10.1021/cm9907211>
16. Nair S., Tsapatsis M., Toby B. H., Kuznicki S. M.: J. Am. Chem. Soc. 2001, 123, 12781. <https://doi.org/10.1021/ja011703z>
17. Leroy F., Rousseau B., Fuchs A. H.: Phys. Chem. Chem. Phys. 2004, 6, 775. <https://doi.org/10.1039/b310273d>
18. Maurin G., Llewellyn P., Poyet T., Kuchta B.: J. Phys. Chem. B 2005, 109, 125. <https://doi.org/10.1021/jp0461753>
19. Calero S., Dubbeldam D., Krishna R., Smit B., Vlugt T. J. H., Denayer J. F. M., Martens J. A., Maesen T. L. M.: J. Am. Chem. Soc. 2004, 126, 11377. <https://doi.org/10.1021/ja0476056>
20. Beerdsen E., Smit B., Calero S.: J. Phys. Chem. B 2002, 106, 10659. <https://doi.org/10.1021/jp026257w>
21. Talu O., Myers A. L.: Colloids Surf., A 2001, 187–188, 83. <https://doi.org/10.1016/S0927-7757(01)00628-8>
22. Smit B.: J. Phys. Chem. 1995, 99, 5597. <https://doi.org/10.1021/j100015a050>
23. Vlugt T. J. H., Zhu W., Kapteijn F., Moulijn J. A., Smit B., Krishna R.: J. Am. Chem. Soc. 1998, 120, 5599. <https://doi.org/10.1021/ja974336t>
24. Dubbeldam D., Calero S., Vlugt T. J. H., Krishna R., Maesen T. L. M., Smit B.: J. Phys. Chem. B 2004, 108, 12301. <https://doi.org/10.1021/jp0376727>
25. Goodbody S. J., Watanabe K., MacGowan D., Walton J. P. R. B., Quirke N.: J. Chem. Soc., Faraday Trans. 1991, 87, 1951. <https://doi.org/10.1039/ft9918701951>
26. Dunne J. A., Mariwala R., Rao M., Sircar S., Gorte R. J., Myers A. L.: Langmuir 1996, 12, 5888. <https://doi.org/10.1021/la960495z>
27. Mitchell M. C., Gallo M., Nenoff T. M.: J. Chem. Phys. 2004, 121, 1910. <https://doi.org/10.1063/1.1766019>
28. Marathe R. P., Mantri K., Srinivasan M. P., Farooq S.: Ind. Eng. Chem. Res. 2004, 43, 5281. <https://doi.org/10.1021/ie049818+>
29. Marathe R. P., Srinivasan M. P., Farooq S.: Chem. Eng. Sci. 2004, 59, 6021. <https://doi.org/10.1016/j.ces.2004.07.055>
30. Larentzos J. P., Clearfield A., Tripathi A., Maginn E. J.: J. Phys. Chem. B 2004, 108, 17560. <https://doi.org/10.1021/jp047041s>
31. Frenkel D., Smit B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, London 2002.
32. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Clarendon Press, Oxford 1987.
33. Brown D., Clarke J. H. R.: Mol. Phys. 1984, 51, 1243. <https://doi.org/10.1080/00268978400100801>
34. Fincham D.: Mol. Simul. 1992, 8, 165. <https://doi.org/10.1080/08927029208022474>
35. Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R.: J. Chem. Phys. 1984, 81, 3684. <https://doi.org/10.1063/1.448118>