Collect. Czech. Chem. Commun.
2010, 75, 221-241
https://doi.org/10.1135/cccc2009104
Published online 2010-02-25 09:39:18
Influence of a small amount of tethered chains on wetting transitions: A density functional approach
Małgorzata Borówko, Andrzej Patrykiejew, Stefan Sokołowski* and Tomasz Staszewski
Department for the Modeling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
References
1. R. R., Andelman D.: Phys. Rep. 2003, 380, 1.
<https://doi.org/10.1016/S0370-1573(03)00118-2>
2. I. L., Newman R. C., McAlpine E., Alexander M. R.: Surf. Interface Anal. 2004, 36, 347.
<https://doi.org/10.1002/sia.1749>
3. J. F., Carlsson A. F., Madix R. J.: Surf. Sci. Rep. 2003, 50, 107.
<https://doi.org/10.1016/S0167-5729(03)00031-1>
4. M., Koovan P., Leermakers F. A. M.: Soft Matter 2009, 5, 1448.
<https://doi.org/10.1039/b816832f>
5. Neue U. D.: HPLC Columns: Theory, Technology and Practice. Wiley–Interscience, New York 1997.
6. J. H., Dill K. A.: Chem. Rev. 1989, 89, 331.
<https://doi.org/10.1021/cr00092a005>
7. S.: J. Phys. (France) 1977, 38, 983.
<https://doi.org/10.1051/jphys:01977003808098300>
8. P. G.: Macromolecules 1980, 13, 1069.
<https://doi.org/10.1021/ma60077a009>
9. S. T., Witten T. A., Cates M. E.: Europhys. Lett. 1988, 5, 413.
<https://doi.org/10.1209/0295-5075/5/5/006>
10. S. T., Witten T. A., Cates M. E.: Macromolecules 1988, 21, 2610.
<https://doi.org/10.1021/ma00186a051>
11. E. B., Borisov O. V., Pryamitsyn V. A., Birshtein T. M.: Macromolecules 1991, 24, 140.
<https://doi.org/10.1021/ma00001a023>
12. C. N., Yethiray A., Curro J. G.: J. Chem Phys. 1999, 111, 1608.
<https://doi.org/10.1063/1.479421>
13. F. A. M., Philipsen H. J. A., Klumperman B.: J. Chromatogr., A 2002, 959, 37.
<https://doi.org/10.1016/S0021-9673(02)00382-5>
14. S. D., Paunov V. N., Rehage H., Kuhn H.: Phys. Chem. Chem. Phys. 2004, 6, 596.
<https://doi.org/10.1039/b314100d>
15. M., Ruckenstein E.: Langmuir 2004, 20, 6490.
<https://doi.org/10.1021/la049781y>
16. P., Koska J., Coad B. R., Brooks D. E., Haynes C. A.: Biotechnol. Bioeng. 2005, 90, 1.
<https://doi.org/10.1002/bit.20430>
17. M. A., Szleifer I.: J. Chem. Phys. 1994, 100, 3210.
<https://doi.org/10.1063/1.466411>
18. I., Carignano M. A.: Adv. Chem. Phys. 1996, 94, 165.
<https://doi.org/10.1002/9780470141533.ch3>
19. J., Müller M.: Macromolecules 2009, 42, 2251.
<https://doi.org/10.1021/ma8026047>
20. J. D., Ye Y., Curro J. G.: J. Chem. Phys. 2002, 117, 2975.
<https://doi.org/10.1063/1.1491242>
21. Y., McCoy J. D., Curro J. G.: J. Chem. Phys. 2003, 119, 555.
<https://doi.org/10.1063/1.1577325>
22. J. D., Teixeira M. A., Curro J. G.: J. Chem. Phys. 2001, 114, 4289.
<https://doi.org/10.1063/1.1344603>
23. D. P., Wu J.: Langmuir 2006, 22, 2712.
<https://doi.org/10.1021/la0527588>
24. T., Li Z., Wu J. Z.: Macromolecules 2007, 40, 334.
<https://doi.org/10.1021/ma061939t>
25. X., Cao D.: J. Chem. Phys. 2009, 130, 164901.
<https://doi.org/10.1063/1.3119311>
26. A. L.: J. Chem. Phys. 2008, 128, 224902.
<https://doi.org/10.1063/1.2929831>
27. T.: J. Phys. Soc. Jpn. 2009, 78, 041009.
<https://doi.org/10.1143/JPSJ.78.041009>
28. X., Cao D., Zhang X., Wang W.: Phys. Rev. E 2009, 79, 021805.
<https://doi.org/10.1103/PhysRevE.79.021805>
29. Y. X., Wu J.: J. Chem. Phys. 2002, 117, 2368.
<https://doi.org/10.1063/1.1491240>
30. Y. X., Wu J.: J. Chem. Phys. 2002, 117, 10165.
31. Y. X., Wu J.: J. Chem. Phys. 2003, 118, 3835.
<https://doi.org/10.1063/1.1539840>
32. M., Rżysko W., Sokołowski S., Staszewski T.: J. Chem Phys. 2007, 126, 214703.
<https://doi.org/10.1063/1.2743399>
33. M., Rżysko W., Sokołowski S., Staszewski T.: J. Phys. Chem. B 2009, 113, 4763.
<https://doi.org/10.1021/jp811143n>
34. A., Sokołowski S., Tscheliessnig R., Fischer J., Pizio O.: J. Phys. Chem. B 2008, 112, 4552.
<https://doi.org/10.1021/jp710978t>
35. G. S., Murat M.: Macromolecules 1993, 26, 3108.
<https://doi.org/10.1021/ma00064a019>
36. P. Y., Binder K.: J. Chem. Phys. 1992, 97, 586.
<https://doi.org/10.1063/1.463554>
37. G. S.: J. Chem. Phys. 1996, 105, 5532.
<https://doi.org/10.1063/1.472395>
38. C., Binder K., Keer T., Mueller M.: J. Chem. Phys. 2006, 124, 064902.
<https://doi.org/10.1063/1.2162883>
39. K., Sakamoto T., Minagawa T., Okabe Y.: Macromolecules 2007, 40, 723.
<https://doi.org/10.1021/ma0613234>
40. R., Sommer J. U., Blumen A.: J. Chem. Phys. 2006, 125, 214702.
<https://doi.org/10.1063/1.2400222>
41. M., Linse P.: Nano Lett. 2006, 6, 133.
<https://doi.org/10.1021/nl051611y>
42. L. G., Mueller M.: J. Chem. Phys. 2006, 124, 084907.
<https://doi.org/10.1063/1.2172597>
43. K. A., Sander L. C., Mountain R. D.: Anal. Chem. 2005, 77, 7862.
<https://doi.org/10.1021/ac051085v>
44. J. L., Siepmann J. I., Schure M. R.: J. Chromatogr., A 2008, 1204, 11.
<https://doi.org/10.1016/j.chroma.2008.07.037>
45. J. L., Siepmann J. I., Schure M. R.: J. Chromatogr., A 2008, 1204, 20.
<https://doi.org/10.1016/j.chroma.2008.07.038>
46. D., Wu J.: Ind. Eng. Chem. Res. 2005, 44, 1120.
<https://doi.org/10.1021/ie049788a>
47. J., Li Z.: Annu. Rev. Phys. Chem. 2007, 58, 85.
<https://doi.org/10.1146/annurev.physchem.58.032806.104650>
48. Y.: Phys. Rev. Lett. 1989, 63, 980.
<https://doi.org/10.1103/PhysRevLett.63.980>
49. R., Evans R., Lang A., Kahl G.: J. Phys. Condens. Matter 2002, 14, 12063.
<https://doi.org/10.1088/0953-8984/14/46/313>
50. T.: J. Chem. Phys. 1970, 53, 471.
<https://doi.org/10.1063/1.1673824>
51. G. A., Carnahan N. F., Starling K. E., Leland T. W.: J. Chem. Phys. 1971, 54, 1523.
<https://doi.org/10.1063/1.1675048>
52. J. D., Chandler D., Andersen H. C.: J. Chem. Phys. 1971, 54, 5237.
<https://doi.org/10.1063/1.1674820>
53. R., Schick M., Wortis M.: Phys. Rev. B 1982, 26, 5112.
<https://doi.org/10.1103/PhysRevB.26.5112>

