Collect. Czech. Chem. Commun. 2010, 75, 221-241
https://doi.org/10.1135/cccc2009104
Published online 2010-02-25 09:39:18

Influence of a small amount of tethered chains on wetting transitions: A density functional approach

Małgorzata Borówko, Andrzej Patrykiejew, Stefan Sokołowski* and Tomasz Staszewski

Department for the Modeling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

References

1. Netz R. R., Andelman D.: Phys. Rep. 2003, 380, 1. <https://doi.org/10.1016/S0370-1573(03)00118-2>
2. Liakos I. L., Newman R. C., McAlpine E., Alexander M. R.: Surf. Interface Anal. 2004, 36, 347. <https://doi.org/10.1002/sia.1749>
3. Weaver J. F., Carlsson A. F., Madix R. J.: Surf. Sci. Rep. 2003, 50, 107. <https://doi.org/10.1016/S0167-5729(03)00031-1>
4. Charlaganov M., Koovan P., Leermakers F. A. M.: Soft Matter 2009, 5, 1448. <https://doi.org/10.1039/b816832f>
5. Neue U. D.: HPLC Columns: Theory, Technology and Practice. Wiley–Interscience, New York 1997.
6. Dorsey J. H., Dill K. A.: Chem. Rev. 1989, 89, 331. <https://doi.org/10.1021/cr00092a005>
7. Alexander S.: J. Phys. (France) 1977, 38, 983. <https://doi.org/10.1051/jphys:01977003808098300>
8. de Gennes P. G.: Macromolecules 1980, 13, 1069. <https://doi.org/10.1021/ma60077a009>
9. Milner S. T., Witten T. A., Cates M. E.: Europhys. Lett. 1988, 5, 413. <https://doi.org/10.1209/0295-5075/5/5/006>
10. Milner S. T., Witten T. A., Cates M. E.: Macromolecules 1988, 21, 2610. <https://doi.org/10.1021/ma00186a051>
11. Zhulina E. B., Borisov O. V., Pryamitsyn V. A., Birshtein T. M.: Macromolecules 1991, 24, 140. <https://doi.org/10.1021/ma00001a023>
12. Patra C. N., Yethiray A., Curro J. G.: J. Chem Phys. 1999, 111, 1608. <https://doi.org/10.1063/1.479421>
13. Leermakers F. A. M., Philipsen H. J. A., Klumperman B.: J. Chromatogr., A 2002, 959, 37. <https://doi.org/10.1016/S0021-9673(02)00382-5>
14. Stoyanov S. D., Paunov V. N., Rehage H., Kuhn H.: Phys. Chem. Chem. Phys. 2004, 6, 596. <https://doi.org/10.1039/b314100d>
15. Manciu M., Ruckenstein E.: Langmuir 2004, 20, 6490. <https://doi.org/10.1021/la049781y>
16. Pang P., Koska J., Coad B. R., Brooks D. E., Haynes C. A.: Biotechnol. Bioeng. 2005, 90, 1. <https://doi.org/10.1002/bit.20430>
17. Carignano M. A., Szleifer I.: J. Chem. Phys. 1994, 100, 3210. <https://doi.org/10.1063/1.466411>
18. Szleifer I., Carignano M. A.: Adv. Chem. Phys. 1996, 94, 165. <https://doi.org/10.1002/9780470141533.ch3>
19. Wang J., Müller M.: Macromolecules 2009, 42, 2251. <https://doi.org/10.1021/ma8026047>
20. McCoy J. D., Ye Y., Curro J. G.: J. Chem. Phys. 2002, 117, 2975. <https://doi.org/10.1063/1.1491242>
21. Ye Y., McCoy J. D., Curro J. G.: J. Chem. Phys. 2003, 119, 555. <https://doi.org/10.1063/1.1577325>
22. McCoy J. D., Teixeira M. A., Curro J. G.: J. Chem. Phys. 2001, 114, 4289. <https://doi.org/10.1063/1.1344603>
23. Cao D. P., Wu J.: Langmuir 2006, 22, 2712. <https://doi.org/10.1021/la0527588>
24. Jiang T., Li Z., Wu J. Z.: Macromolecules 2007, 40, 334. <https://doi.org/10.1021/ma061939t>
25. Xu X., Cao D.: J. Chem. Phys. 2009, 130, 164901. <https://doi.org/10.1063/1.3119311>
26. Frischknecht A. L.: J. Chem. Phys. 2008, 128, 224902. <https://doi.org/10.1063/1.2929831>
27. Taniguchi T.: J. Phys. Soc. Jpn. 2009, 78, 041009. <https://doi.org/10.1143/JPSJ.78.041009>
28. Xu X., Cao D., Zhang X., Wang W.: Phys. Rev. E 2009, 79, 021805. <https://doi.org/10.1103/PhysRevE.79.021805>
29. Yu Y. X., Wu J.: J. Chem. Phys. 2002, 117, 2368. <https://doi.org/10.1063/1.1491240>
30. Yu Y. X., Wu J.: J. Chem. Phys. 2002, 117, 10165.
31. Yu Y. X., Wu J.: J. Chem. Phys. 2003, 118, 3835. <https://doi.org/10.1063/1.1539840>
32. Borówko M., Rżysko W., Sokołowski S., Staszewski T.: J. Chem Phys. 2007, 126, 214703. <https://doi.org/10.1063/1.2743399>
33. Borówko M., Rżysko W., Sokołowski S., Staszewski T.: J. Phys. Chem. B 2009, 113, 4763. <https://doi.org/10.1021/jp811143n>
34. Patrykiejew A., Sokołowski S., Tscheliessnig R., Fischer J., Pizio O.: J. Phys. Chem. B 2008, 112, 4552. <https://doi.org/10.1021/jp710978t>
35. Grest G. S., Murat M.: Macromolecules 1993, 26, 3108. <https://doi.org/10.1021/ma00064a019>
36. Lai P. Y., Binder K.: J. Chem. Phys. 1992, 97, 586. <https://doi.org/10.1063/1.463554>
37. Grest G. S.: J. Chem. Phys. 1996, 105, 5532. <https://doi.org/10.1063/1.472395>
38. Pastorino C., Binder K., Keer T., Mueller M.: J. Chem. Phys. 2006, 124, 064902. <https://doi.org/10.1063/1.2162883>
39. Ohno K., Sakamoto T., Minagawa T., Okabe Y.: Macromolecules 2007, 40, 723. <https://doi.org/10.1021/ma0613234>
40. Descas R., Sommer J. U., Blumen A.: J. Chem. Phys. 2006, 125, 214702. <https://doi.org/10.1063/1.2400222>
41. Patra M., Linse P.: Nano Lett. 2006, 6, 133. <https://doi.org/10.1021/nl051611y>
42. MacDowell L. G., Mueller M.: J. Chem. Phys. 2006, 124, 084907. <https://doi.org/10.1063/1.2172597>
43. Lippa K. A., Sander L. C., Mountain R. D.: Anal. Chem. 2005, 77, 7862. <https://doi.org/10.1021/ac051085v>
44. Rafferty J. L., Siepmann J. I., Schure M. R.: J. Chromatogr., A 2008, 1204, 11. <https://doi.org/10.1016/j.chroma.2008.07.037>
45. Rafferty J. L., Siepmann J. I., Schure M. R.: J. Chromatogr., A 2008, 1204, 20. <https://doi.org/10.1016/j.chroma.2008.07.038>
46. Fu D., Wu J.: Ind. Eng. Chem. Res. 2005, 44, 1120. <https://doi.org/10.1021/ie049788a>
47. Wu J., Li Z.: Annu. Rev. Phys. Chem. 2007, 58, 85. <https://doi.org/10.1146/annurev.physchem.58.032806.104650>
48. Rosenfeld Y.: Phys. Rev. Lett. 1989, 63, 980. <https://doi.org/10.1103/PhysRevLett.63.980>
49. Roth R., Evans R., Lang A., Kahl G.: J. Phys. Condens. Matter 2002, 14, 12063. <https://doi.org/10.1088/0953-8984/14/46/313>
50. Boublik T.: J. Chem. Phys. 1970, 53, 471. <https://doi.org/10.1063/1.1673824>
51. Mansoori G. A., Carnahan N. F., Starling K. E., Leland T. W.: J. Chem. Phys. 1971, 54, 1523. <https://doi.org/10.1063/1.1675048>
52. Weeks J. D., Chandler D., Andersen H. C.: J. Chem. Phys. 1971, 54, 5237. <https://doi.org/10.1063/1.1674820>
53. Pandit R., Schick M., Wortis M.: Phys. Rev. B 1982, 26, 5112. <https://doi.org/10.1103/PhysRevB.26.5112>