Collect. Czech. Chem. Commun.
     2010, 75, 405-424
  https://doi.org/10.1135/cccc2009535
  
Published online 2010-04-15 09:29:41
Solvation and ion pair association in aqueous metal sulfates: Interpretation of NDIS raw data by isobaric–isothermal molecular dynamics simulation
Ariel A. Chialvoa,* and J. Michael Simonsonb
a Chemical Sciences Division, Geochemistry and Interfacial Science Group,  Oak Ridge National Laboratory, Oak Ridge, TN 37831-6110, USA
b Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,  TN 37831-6496, USA
References
1.  M., Burgard M., Boehme C., Wipff G.: Phys. Chem. Chem. Phys. 2001, 3, 1317.
<https://doi.org/10.1039/b009859k>
2.  K., Stephan H., Grotjahn M.: Chem. Eng. Technol. 2003, 26, 1107.
<https://doi.org/10.1002/ceat.200306105>
3. Moyer B. A., Bonnesen P. V. in: Supramolecular Chemistry of Anions (A. Bianchi, K. Bowman-James and E. Garcia-Espana, Eds). Wiley–VCH, New York 1997.
4.  F.: Arch. Exp. Pathol. Pharmacol. 1888, 24, 247.
<https://doi.org/10.1007/BF01918191>
5.  W., Lo Nostro P., Ninham B. W.: Curr. Opin. Colloid Interface Sci. 2004, 9, 1.
<https://doi.org/10.1016/j.cocis.2004.05.004>
6.  A. L., Clare J. P., Davis A. P.: Chem. Commun. 2005, 5263.
<https://doi.org/10.1039/b510768g>
7.  A. L., Clare J. P., Taylor L. H., Charmant J. P. H., Davis A. P.: Chem. Commun. 2003, 2246.
<https://doi.org/10.1039/b305261c>
8.  T. G., Marquez M., Sessler J. L., Shriver J. A., Vercouter T., Moyer B. A.: Chem. Commun. 2003, 2248.
<https://doi.org/10.1039/b306385m>
9.  A. A.: Fluid Phase Equilib. 1993, 83, 23.
<https://doi.org/10.1016/0378-3812(93)87003-J>
10.  A. A., Cummings P. T., Simonson J. M., Mesmer R. E.: J. Chem. Phys. 1999, 110, 1075.
<https://doi.org/10.1063/1.478151>
11. Bockris J. O. M., Reddy A. K. N.: Modern Electrochemistry, Vol. 1. Plenum Press, New York 1998.
12.  G. J., Neilson G. W.: J. Mol. Liq. 1990, 46, 165.
<https://doi.org/10.1016/0167-7322(90)80052-L>
13.  H., Radnai T.: Chem. Rev. 1993, 93, 1157.
<https://doi.org/10.1021/cr00019a014>
14.  J. F., Amis E. S.: Chem. Rev. 1967, 67, 367.
<https://doi.org/10.1021/cr60248a002>
15.  A. A., Kusalik P. G., Cummings P. T., Simonson J. M.: J. Phys. Condens. Matter 2000, 12, 3585.
<https://doi.org/10.1088/0953-8984/12/15/307>
16.  A. K.: Faraday Discuss. Chem. Soc. 1996, 103, 41.
<https://doi.org/10.1039/fd9960300041>
17.  T., Kunz W., Turq P., Bellisent-Funel M.-C.: J. Phys. Condens. Matter 1991, 3, 9511.
<https://doi.org/10.1088/0953-8984/3/47/023>
18.  W., Barthel J., Klein L., Cartaillert T., Turq P., Reindl B.: J. Solution Chem. 1991, 20, 875.
<https://doi.org/10.1007/BF01074950>
19.  A. A., Simonson J. M.: J. Chem. Phys. 2003, 119, 8052.
<https://doi.org/10.1063/1.1610443>
20.  A. A., Simonson J. M.: J. Chem. Phys. 2006, 124.
21.  A. A., Simonson J. M.: Mol. Phys. 2002, 100, 2307.
<https://doi.org/10.1080/00268970110118231>
22.  J. E.: Chem. Soc. Rev. 1995, 24, 159.
<https://doi.org/10.1039/cs9952400159>
23. Squires G. L.: Introduction to the Theory of Thermal Neutron Scattering. Dover Publications, Mineola 1996.
24.  A. K., Neilson G. W., Enderby J. E.: J. Phys. C 1977, 10, 1793.
<https://doi.org/10.1088/0022-3719/10/11/014>
25.  J. C., DeLap J. H.: J. Chem. Phys. 1961, 35, 213.
<https://doi.org/10.1063/1.1731893>
26.  H. J. C., Grigera J. R., Straatsma T. P.: J. Phys. Chem. 1987, 91, 6269.
<https://doi.org/10.1021/j100308a038>
27.  L. X.: J. Chem. Phys. 1992, 96, 6970.
<https://doi.org/10.1063/1.462555>
28.  S. L., Palmer B. J., Fulton J. L.: J. Chem. Phys. 1998, 108, 4039.
<https://doi.org/10.1063/1.475838>
29.  F., Reinhoudt D. N.: Chem. Eur. J. 1999, 5, 90.
<https://doi.org/10.1002/(SICI)1521-3765(19990104)5:1<90::AID-CHEM90>3.0.CO;2-8>
30.  W. R., Pettitt B. M., McCammon J. A.: J. Phys. Chem. 1994, 98, 6225.
<https://doi.org/10.1021/j100075a027>
31.  S.: J. Phys. Soc. Jpn. 2001, 70, 75.
<https://doi.org/10.1143/JPSJ.70.75>
32.  V. F.: Neutron News 1992, 3, 26.
<https://doi.org/10.1080/10448639208218770>


