Collect. Czech. Chem. Commun.
2010, 75, 617-635
https://doi.org/10.1135/cccc2009097
Published online 2010-05-31 22:03:19
Thermodynamics and structure of the {water + methanol} system viewed from three simple additive pair-wise intermolecular potentials based on the rigid molecule approximation
Ana Dopazo-Paz, Paula Gómez-Álvarez and Diego González-Salgado*
Department of Applied Physics, Faculty of Sciences, University of Vigo, As Lagoas s/n, C.P. 32004, Ourense, Spain
References
1. Primo Yúfera E.: Química Inorgánica Básica y Aplicada: De la Molécula a la Industria. Universidad Politécnica de Valencia, Barcelona 2003.
2. Neue U. D.: HPLC Columns: Theory, Technology, and Practice. Wiley-VCH, Inc., New York 1997.
3. Duffie J. A., Beckman W. A.: Solar Engineering of Thermal Processes. Wiley, New York 1991.
4. Tyler G.: Environmental Science: Problems, Connections and Solutions. Cengage Learning Eds, California 2007.
5. Información Tecnológica. Vol. 5, No. 2. La Serena, Chile 1994.
6. Chem. Rev. 2008, 108, 74.
< P.: https://doi.org/10.1021/cr068037a>
7. Int. J. Thermophys. 2003, 24, 1551.
< M. M., Magge J. W., Abdulagatov I. M.: https://doi.org/10.1023/B:IJOT.0000004093.20692.dc>
8. Quant. Rev., Chem. Soc. 1966, 20, 1.
< F., Ives D. J. G.: https://doi.org/10.1039/qr9662000001>
9. Water Sci. Rev. 1989, 1, 171.
< F., Desnoyers J. E.: https://doi.org/10.1017/CBO9780511565380.004>
10. J. Solution Chem. 1980, 9, 791.
< G. C., Kiyohara O.: https://doi.org/10.1007/BF00646798>
11. J. Chem. Eng. Data 1965, 10, 216.
< R. F., Lu B. C.-Y.: https://doi.org/10.1021/je60026a003>
12. J. Solution Chem. 1980, 9, 931.
< G. C., D’Arcy P. J., Kiyohara O.: https://doi.org/10.1007/BF00646404>
13. J. Chem. Eng. Data 1982, 27, 439.
< G. C., D’Arcy P. J.: https://doi.org/10.1021/je00030a021>
14. J. Chem. Thermodyn. 1985, 17, 49.
< A. J., Woolf L. A.: https://doi.org/10.1016/0021-9614(85)90031-X>
15. J. Chem. Phys. 1945, 13, 507.
< H. S.: https://doi.org/10.1063/1.1723985>
16. J. Chem. Phys. 1945, 13, 478.
< H. S., Evans M. W.: https://doi.org/10.1063/1.1723983>
17. Chem. Phys. 1996, 202, 295.
< A. K.: https://doi.org/10.1016/0301-0104(95)00357-6>
18. Mol. Phys. 2001, 99, 1503.
< A. K.: https://doi.org/10.1080/00268970110056889>
19. J. Phys. Chem. B 1998, 102, 3551.
< D. T., Finney J. L., Soper A. K.: https://doi.org/10.1021/jp972780c>
20. Phys. Rev. Lett. 1993, 71, 4346.
< A. K., Finney J. L.: https://doi.org/10.1103/PhysRevLett.71.4346>
21. Europhys. Lett. 2002, 59, 377.
< S., Soper A. K., Finney J. L., Crain J.: https://doi.org/10.1209/epl/i2002-00205-7>
22. J. Chem. Phys. 2004, 121, 6456.
< L., Bates S. P., Hargreaves R., Fox J. P., Crain J., Finney J. L., Réat V., Soper A. K.: https://doi.org/10.1063/1.1789951>
23. Nature 2002, 416, 829.
< S., Crain J., Poon W. C. K., Finney J. L., Soper A. K.: https://doi.org/10.1038/416829a>
24. J. Phys. Chem. 2006, 110, 3472.
< A. K., Dougan L., Crain J., Finney J. L.: https://doi.org/10.1021/jp054556q>
25. J. Chem. Phys. 1983, 78, 454.
< S., Nakanishi K., Touhara H.: https://doi.org/10.1063/1.444525>
26. J. Chem. Phys. 1984, 81, 890.
< S., Touhara H., Nakanishi K.: https://doi.org/10.1063/1.447726>
27. J. Chem. Phys. 1992, 97, 2626.
< H., Gubbins K. E.: https://doi.org/10.1063/1.463051>
28. Mol. Phys. 1992, 76, 1221.
< H., Walsh J., Gubbins K. E.: https://doi.org/10.1080/00268979200102001>
29. Fluid Phase Equilib. 1993, 8351.
C., Tanaka H., Walsh J. M., Gubbins K. E., Zollweg J. A.:
30. J. Mol. Struct. 1993, 282, 151.
< L. C. G.: https://doi.org/10.1016/0166-1280(93)85045-Z>
31. J. Phys. Chem. A 1997, 101, 5910.
< A., Kusalik P. G., Svishchev I. M.: https://doi.org/10.1021/jp970673c>
32. J. Mol. Graphics Modell. 2001, 19, 412.
< M., Noskov S., Puhovski K., Kerdcharoen T., Hannangbua S.: https://doi.org/10.1016/S1093-3263(00)00100-5>
33. J. Phys.: Condens. Matter 2005, 17, S3265.
< C., Hargreaves R., Bates S. P.: https://doi.org/10.1088/0953-8984/17/45/011>
34. Fluid Phase Equilib. 2006, 240, 161.
< D., Nezbeda I.: https://doi.org/10.1016/j.fluid.2005.12.007>
35. J. Mol. Liq. 2007, 131–132, 158.
< L., Nezbeda I.: https://doi.org/10.1016/j.molliq.2006.08.052>
36. Phys. Chem. Chem. Phys. 2008, 10, 5004.
< I., Megyes T., Balint S., Grosz T., Chiaia V.: https://doi.org/10.1039/b808326f>
37. J. Phys. Chem. B 2007, 111, 1119.
< C. A., Troncoso J., Gonzalez-Salgado D., Garcia-Miaja G., Hernandez-Segura G. O., Bessieres D., Medeiros M., Romani L., Costas M.: https://doi.org/10.1021/jp0640272>
38. Collect. Czech. Chem. Commun. 2009, 74, 559.
< F., Nezbeda I.: https://doi.org/10.1135/cccc2008202>
39. Chem. Phys. Lett. 1982, 86, 299.
< G., Corongiu G., Clementi E.: https://doi.org/10.1016/0009-2614(82)80210-8>
40. J. Am. Chem. Soc. 1983, 105, 1407.
< W. L., Madura J. D.: https://doi.org/10.1021/ja00344a001>
41. J. Chem. Phys. 1990, 93, 5156.
< M., Haughney M., McDonald I. R., Klein M. L.: https://doi.org/10.1063/1.458652>
42. Chem. Phys. 1991, 158, 65.
< G., Hawlicka E., Heinzinger K.: https://doi.org/10.1016/0301-0104(91)87055-Z>
43. Mol. Phys. 1991, 73, 897.
< G., Bako I., Heinzinger K., Boop P.: https://doi.org/10.1080/00268979100101641>
44. J. Mol. Liq. 2001, 91, 157.
< S. Y., Kiselev M. G., Kolker A. M., Rode B. M.: https://doi.org/10.1016/S0167-7322(01)00157-X>
45. J. Chem. Phys. 2003, 119, 7308.
< E. J. W., Hoffmann A. C., van Maaren P. J., van der Spoel D.: https://doi.org/10.1063/1.1607918>
46. Phys. Rev. B 2005, 71, 024201.
< S. K., Fox J. P., Hargreaves R., Bates S. P.: https://doi.org/10.1103/PhysRevB.71.024201>
47. J. Chem. Phys. 2005, 122, 174514.
< L., Hargreaves R., Bates S. P., Finney J. L., Reat V., Soper A. K., Crain J.: https://doi.org/10.1063/1.1888405>
48. J. Comput. Chem. 2006, 27, 1494.
< H., Geerke D. P., Liu H., Van Gunsteren W. F.: https://doi.org/10.1002/jcc.20429>
49. J. Comput. Chem. 2008, 29, 1142.
< Y., Lee Warren G., Patel S.: https://doi.org/10.1002/jcc.20877>
50. J. Chem. Phys. 2005, 123, 234505.
< J. L. F., Vega C.: https://doi.org/10.1063/1.2121687>
51. J. Chem. Phys. 1983, 79, 926.
< W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.: https://doi.org/10.1063/1.445869>
52. Mol. Phys. 2009, 107, 365.
< H. L., Aragonés J. L., Vega C., Noya E. G., Abascal J. L. F., González M. A., McBride C.: https://doi.org/10.1080/00268970902784926>
53. J. Phys. Chem. 1986, 90, 1276.
< W. L.: https://doi.org/10.1021/j100398a015>
54. J. Chem. Phys. 2005, 122, 234511.
< J. L. F., Sanz E., García Fernández R., Vega C.: https://doi.org/10.1063/1.1931662>
55. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Oxford University Press, Oxford 1987.
56. Frenkel D., Smit B.: Undestanding Molecular Simulation: From Algorithms to Applications. Academic Press, California 1996.
57. J. Am. Chem. Soc. 1936, 58, 1486.
< L.: https://doi.org/10.1021/ja01299a050>
58. Riddick J. A., Bunger W. B., Sakano T.: Organic Solvents, Physical Properties and Methods of Purification, Vol. II. Wiley, New York 1986.
59. J. Chem. Phys. 1989, 91, 461.
< H., Petersen H. G.: https://doi.org/10.1063/1.457480>
60. Phys. Rev. D 1984, 29, 306.
< C.: https://doi.org/10.1103/PhysRevD.29.306>
61. Phys. Chem. Chem. Phys. 2001, 3, 4333.
< M., Ungerer P., Boutin A., Fuchs A. H.: https://doi.org/10.1039/b104150a>
62. J. Chem. Phys. 2008, 129, 014511.
< M. M., Cerdeirina C. A., Medeiros M.: https://doi.org/10.1063/1.2943317>
63. Bevington P. R., Robinson D. K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill, New York 1992.
64. J. Phys. Chem. 2007, 111, 15811.
J. L. F., Vega C.: