Collect. Czech. Chem. Commun.
2010, 75, 617-635
https://doi.org/10.1135/cccc2009097
Published online 2010-05-31 22:03:19
Thermodynamics and structure of the {water + methanol} system viewed from three simple additive pair-wise intermolecular potentials based on the rigid molecule approximation
Ana Dopazo-Paz, Paula Gómez-Álvarez and Diego González-Salgado*
Department of Applied Physics, Faculty of Sciences, University of Vigo, As Lagoas s/n, C.P. 32004, Ourense, Spain
References
1. Primo Yúfera E.: Química Inorgánica Básica y Aplicada: De la Molécula a la Industria. Universidad Politécnica de Valencia, Barcelona 2003.
2. Neue U. D.: HPLC Columns: Theory, Technology, and Practice. Wiley-VCH, Inc., New York 1997.
3. Duffie J. A., Beckman W. A.: Solar Engineering of Thermal Processes. Wiley, New York 1991.
4. Tyler G.: Environmental Science: Problems, Connections and Solutions. Cengage Learning Eds, California 2007.
5. Información Tecnológica. Vol. 5, No. 2. La Serena, Chile 1994.
6. P.: Chem. Rev. 2008, 108, 74.
<https://doi.org/10.1021/cr068037a>
7. M. M., Magge J. W., Abdulagatov I. M.: Int. J. Thermophys. 2003, 24, 1551.
<https://doi.org/10.1023/B:IJOT.0000004093.20692.dc>
8. F., Ives D. J. G.: Quant. Rev., Chem. Soc. 1966, 20, 1.
<https://doi.org/10.1039/qr9662000001>
9. F., Desnoyers J. E.: Water Sci. Rev. 1989, 1, 171.
<https://doi.org/10.1017/CBO9780511565380.004>
10. G. C., Kiyohara O.: J. Solution Chem. 1980, 9, 791.
<https://doi.org/10.1007/BF00646798>
11. R. F., Lu B. C.-Y.: J. Chem. Eng. Data 1965, 10, 216.
<https://doi.org/10.1021/je60026a003>
12. G. C., D’Arcy P. J., Kiyohara O.: J. Solution Chem. 1980, 9, 931.
<https://doi.org/10.1007/BF00646404>
13. G. C., D’Arcy P. J.: J. Chem. Eng. Data 1982, 27, 439.
<https://doi.org/10.1021/je00030a021>
14. A. J., Woolf L. A.: J. Chem. Thermodyn. 1985, 17, 49.
<https://doi.org/10.1016/0021-9614(85)90031-X>
15. H. S.: J. Chem. Phys. 1945, 13, 507.
<https://doi.org/10.1063/1.1723985>
16. H. S., Evans M. W.: J. Chem. Phys. 1945, 13, 478.
<https://doi.org/10.1063/1.1723983>
17. A. K.: Chem. Phys. 1996, 202, 295.
<https://doi.org/10.1016/0301-0104(95)00357-6>
18. A. K.: Mol. Phys. 2001, 99, 1503.
<https://doi.org/10.1080/00268970110056889>
19. D. T., Finney J. L., Soper A. K.: J. Phys. Chem. B 1998, 102, 3551.
<https://doi.org/10.1021/jp972780c>
20. A. K., Finney J. L.: Phys. Rev. Lett. 1993, 71, 4346.
<https://doi.org/10.1103/PhysRevLett.71.4346>
21. S., Soper A. K., Finney J. L., Crain J.: Europhys. Lett. 2002, 59, 377.
<https://doi.org/10.1209/epl/i2002-00205-7>
22. L., Bates S. P., Hargreaves R., Fox J. P., Crain J., Finney J. L., Réat V., Soper A. K.: J. Chem. Phys. 2004, 121, 6456.
<https://doi.org/10.1063/1.1789951>
23. S., Crain J., Poon W. C. K., Finney J. L., Soper A. K.: Nature 2002, 416, 829.
<https://doi.org/10.1038/416829a>
24. A. K., Dougan L., Crain J., Finney J. L.: J. Phys. Chem. 2006, 110, 3472.
<https://doi.org/10.1021/jp054556q>
25. S., Nakanishi K., Touhara H.: J. Chem. Phys. 1983, 78, 454.
<https://doi.org/10.1063/1.444525>
26. S., Touhara H., Nakanishi K.: J. Chem. Phys. 1984, 81, 890.
<https://doi.org/10.1063/1.447726>
27. H., Gubbins K. E.: J. Chem. Phys. 1992, 97, 2626.
<https://doi.org/10.1063/1.463051>
28. H., Walsh J., Gubbins K. E.: Mol. Phys. 1992, 76, 1221.
<https://doi.org/10.1080/00268979200102001>
29. C., Tanaka H., Walsh J. M., Gubbins K. E., Zollweg J. A.: Fluid Phase Equilib. 1993, 8351.
30. L. C. G.: J. Mol. Struct. 1993, 282, 151.
<https://doi.org/10.1016/0166-1280(93)85045-Z>
31. A., Kusalik P. G., Svishchev I. M.: J. Phys. Chem. A 1997, 101, 5910.
<https://doi.org/10.1021/jp970673c>
32. M., Noskov S., Puhovski K., Kerdcharoen T., Hannangbua S.: J. Mol. Graphics Modell. 2001, 19, 412.
<https://doi.org/10.1016/S1093-3263(00)00100-5>
33. C., Hargreaves R., Bates S. P.: J. Phys.: Condens. Matter 2005, 17, S3265.
<https://doi.org/10.1088/0953-8984/17/45/011>
34. D., Nezbeda I.: Fluid Phase Equilib. 2006, 240, 161.
<https://doi.org/10.1016/j.fluid.2005.12.007>
35. L., Nezbeda I.: J. Mol. Liq. 2007, 131–132, 158.
<https://doi.org/10.1016/j.molliq.2006.08.052>
36. I., Megyes T., Balint S., Grosz T., Chiaia V.: Phys. Chem. Chem. Phys. 2008, 10, 5004.
<https://doi.org/10.1039/b808326f>
37. C. A., Troncoso J., Gonzalez-Salgado D., Garcia-Miaja G., Hernandez-Segura G. O., Bessieres D., Medeiros M., Romani L., Costas M.: J. Phys. Chem. B 2007, 111, 1119.
<https://doi.org/10.1021/jp0640272>
38. F., Nezbeda I.: Collect. Czech. Chem. Commun. 2009, 74, 559.
<https://doi.org/10.1135/cccc2008202>
39. G., Corongiu G., Clementi E.: Chem. Phys. Lett. 1982, 86, 299.
<https://doi.org/10.1016/0009-2614(82)80210-8>
40. W. L., Madura J. D.: J. Am. Chem. Soc. 1983, 105, 1407.
<https://doi.org/10.1021/ja00344a001>
41. M., Haughney M., McDonald I. R., Klein M. L.: J. Chem. Phys. 1990, 93, 5156.
<https://doi.org/10.1063/1.458652>
42. G., Hawlicka E., Heinzinger K.: Chem. Phys. 1991, 158, 65.
<https://doi.org/10.1016/0301-0104(91)87055-Z>
43. G., Bako I., Heinzinger K., Boop P.: Mol. Phys. 1991, 73, 897.
<https://doi.org/10.1080/00268979100101641>
44. S. Y., Kiselev M. G., Kolker A. M., Rode B. M.: J. Mol. Liq. 2001, 91, 157.
<https://doi.org/10.1016/S0167-7322(01)00157-X>
45. E. J. W., Hoffmann A. C., van Maaren P. J., van der Spoel D.: J. Chem. Phys. 2003, 119, 7308.
<https://doi.org/10.1063/1.1607918>
46. S. K., Fox J. P., Hargreaves R., Bates S. P.: Phys. Rev. B 2005, 71, 024201.
<https://doi.org/10.1103/PhysRevB.71.024201>
47. L., Hargreaves R., Bates S. P., Finney J. L., Reat V., Soper A. K., Crain J.: J. Chem. Phys. 2005, 122, 174514.
<https://doi.org/10.1063/1.1888405>
48. H., Geerke D. P., Liu H., Van Gunsteren W. F.: J. Comput. Chem. 2006, 27, 1494.
<https://doi.org/10.1002/jcc.20429>
49. Y., Lee Warren G., Patel S.: J. Comput. Chem. 2008, 29, 1142.
<https://doi.org/10.1002/jcc.20877>
50. J. L. F., Vega C.: J. Chem. Phys. 2005, 123, 234505.
<https://doi.org/10.1063/1.2121687>
51. W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.: J. Chem. Phys. 1983, 79, 926.
<https://doi.org/10.1063/1.445869>
52. H. L., Aragonés J. L., Vega C., Noya E. G., Abascal J. L. F., González M. A., McBride C.: Mol. Phys. 2009, 107, 365.
<https://doi.org/10.1080/00268970902784926>
53. W. L.: J. Phys. Chem. 1986, 90, 1276.
<https://doi.org/10.1021/j100398a015>
54. J. L. F., Sanz E., García Fernández R., Vega C.: J. Chem. Phys. 2005, 122, 234511.
<https://doi.org/10.1063/1.1931662>
55. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Oxford University Press, Oxford 1987.
56. Frenkel D., Smit B.: Undestanding Molecular Simulation: From Algorithms to Applications. Academic Press, California 1996.
57. L.: J. Am. Chem. Soc. 1936, 58, 1486.
<https://doi.org/10.1021/ja01299a050>
58. Riddick J. A., Bunger W. B., Sakano T.: Organic Solvents, Physical Properties and Methods of Purification, Vol. II. Wiley, New York 1986.
59. H., Petersen H. G.: J. Chem. Phys. 1989, 91, 461.
<https://doi.org/10.1063/1.457480>
60. C.: Phys. Rev. D 1984, 29, 306.
<https://doi.org/10.1103/PhysRevD.29.306>
61. M., Ungerer P., Boutin A., Fuchs A. H.: Phys. Chem. Chem. Phys. 2001, 3, 4333.
<https://doi.org/10.1039/b104150a>
62. M. M., Cerdeirina C. A., Medeiros M.: J. Chem. Phys. 2008, 129, 014511.
<https://doi.org/10.1063/1.2943317>
63. Bevington P. R., Robinson D. K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill, New York 1992.
64. J. L. F., Vega C.: J. Phys. Chem. 2007, 111, 15811.

