Collect. Czech. Chem. Commun.
2011, 76, 1199-1222
https://doi.org/10.1135/cccc2010104
Published online 2011-09-22 09:09:26
Problems with a conformation assignment of aryl-substituted resorc[4]arenes
Jakub Kaminskýa, Hana Dvořákováb, Jan Štursaa,c and Jitka Moravcovác,*
a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Laboratory of NMR Spectroscopy, Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
c Department of Chemistry of Natural Compounds, Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
References
1. J. Org. Chem. 2005, 62, 932.
< B., Delle Monache G., Salvatore P., Gasparrini F., Villani C., Botta M., Correli F., Tafi A., Gacs-Baitz E., Santini A., Carvalho C. F., Misiti D.: https://doi.org/10.1021/jo962018r>
2. Tetrahedron 1996, 52, 2663.
< P., Verboom W., Reinhoudt D. N.: https://doi.org/10.1016/0040-4020(95)00984-1>
3. Polish J. Chem. 2003, 77, 1079.
W., Zujewska T., Bachowska B.:
4. Chem. Rev. 1997, 97, 1647.
< M. M., Rebek J. J.: https://doi.org/10.1021/cr9603800>
5. J. Chem. Soc., Perkin Trans. 1 1998, 4135.
< Y., Ueda M., Nagahata R., Takeuchi K., Asai M.: https://doi.org/10.1039/a806475j>
6. Eur. J. Org. Chem. 1999, 1991.
D. M., Rebek J. J.:
7. Acc. Chem. Res. 2001, 34, 95.
< R., Yoon J.: https://doi.org/10.1021/ar980082k>
8. Chem. Rev. 1999, 99, 931.
< A., Sherman J. C.: https://doi.org/10.1021/cr960048o>
9. Angew. Chem. Int. Ed. 2005, 44, 5733.
< R. M., Thallapally P. K., Cave G. W., Atwood J. L.: https://doi.org/10.1002/anie.200501491>
10. J. Am. Chem. Soc. 2005, 127, 14168.
< Y., Rudzevich V., Moon C., Schnell I., Fischer K., Bohmer V.: https://doi.org/10.1021/ja055357n>
11. Mini-Rev. Org. Chem. 2006, 3, 219.
< L., Cheriaa N., Mahouachi M., Othman A., Abidi R., Kim J. S., Kim Y., Vicens J.: https://doi.org/10.2174/157019306778742850>
12. Eur. J. Org. Chem. 2004, 4884.
< V. I., Serkova O., Gruner M., Goutal S., Bauer I., Habicher W. D., Lyssenko K. A., Antipin M. Y., Nifantyev E. E.: https://doi.org/10.1002/ejoc.200400363>
13. J. Org. Chem. 1988, 53, 5475.
< L., Dalcanale E., Duvosel A., Spera S.: https://doi.org/10.1021/jo00258a015>
14. J. Org. Chem. 1997, 62, 1788.
< B., DelleMonache G., Derosa M. C., Seri C., Benedetti E., Iacovino R., Botta M., Corelli F., Masignani V., Tafi A., GacsBaitz E., Santini A., Misiti D.: https://doi.org/10.1021/jo9619692>
15. J. Chem. Soc., Perkin Trans. 2 1990, 2075.
< L., Dalcanale E., Duvosel A., Spera S.: https://doi.org/10.1039/p29900002075>
16. J. Org. Chem. 2005, 63, 8259.
< O., Verboom W., Hulst R., Kooijman H., Spek A. L., Reinhoudt D. N.: https://doi.org/10.1021/jo9810258>
17. J. Org. Chem. 2006, 71, 976.
< C., Hembury G. A., Borovkov V. V., Klaes M., Agena C., Wada T., Grimme S., Inoue Y., Mattay J.: https://doi.org/10.1021/jo0518654>
18. J. Org. Chem. 1989, 54, 1305.
< L. M., Tucker J. A., Dalcanale E., Weiser J., Bryant J. A., Sherman J. C., Helgeson R. C., Knobler C. B., Cram D. J.: https://doi.org/10.1021/jo00267a015>
19. J. Mol. Struct. 2000, 525, 65.
< B. M., Pieroni O. I.: https://doi.org/10.1016/S0022-2860(00)00418-X>
20. New J. Chem. 2008, 32, 994.
< D., Watson G. W., Gunnlaugsson T., Matthews S. E.: https://doi.org/10.1039/b714735j>
21. J. Am. Chem. Soc. 1980, 102, 6046.
< A. G. S.: https://doi.org/10.1021/ja00539a012>
22. J. Mol. Struct. 2003, 659, 119.
< S., Adams R. D., Guo D.-S., Zhang Q.-F.: https://doi.org/10.1016/j.molstruc.2003.08.004>
23. Chemistry 2006, 12, 4775.
P., Pirondini L., Paderni G., Massera C., Dalcanale E., Azov V. A., Diederich F.:
24. Eur. J. Org. Chem. 2008, 555.
< M., Klaes M., Neumann B., Stammler H. G., Grimme S., Mattay J.: https://doi.org/10.1002/ejoc.200700802>
25. J. Chem. Soc., Perkin Trans. 2 2002, 1922.
M., Lhoták P., Lang J., Dvořáková H., Stibor I., Koča J.:
26. J. Phys. Chem. A 2005, 109, 5518.
< M., Dvořáková H., Andrioletti B., Král V., Bouř P.: https://doi.org/10.1021/jp050746p>
27. Inorg. Chem. 2002, 41, 300.
< A. M., Haymond G. S.: https://doi.org/10.1021/ic010936o>
28. J. Chem. Theor. Comput. 2007, 3, 1774.
< J., Jensen F.: https://doi.org/10.1021/ct700082f>
29. Crystengcomm 2009, 11, 1572.
< K., Nissinen M.: https://doi.org/10.1039/b902718a>
30. Tetrahedron 2003, 59, 3315.
< G., Pasturel-Jacope Y., Maignan J.: https://doi.org/10.1016/S0040-4020(03)00405-8>
31. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox, D. J.: Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford (CT) 2009.
32. MacroModel, version 9.1. Schrodinger, LLC, New York (NY) 2005.
33. J. Comput. Chem. 1996, 17, 490.
< T. A.: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P>
34. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>