Collect. Czech. Chem. Commun.
2011, 76, 1223-1238
https://doi.org/10.1135/cccc2011085
Published online 2011-09-22 09:11:23
Modeling of the ribonucleotide reductases substrate reaction. Hydrogen atom abstraction by a thiyl free radical and detection of the ribosyl-based carbon radical by pulse radiolysis
Stanislaw F. Wnuka,*, Jaidev A. K. Penjarlaa, Thao Danga, Alexander M. Mebela, Thomas Nauserb and Christian Schöneichc
a Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
b Department of Chemistry and Applied Bioscience, ETH Zurich, CH-8093, Switzerland
c Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
References
1. Chem. Biol. 1995, 2, 793.
< J., van der Donk W. A.: https://doi.org/10.1016/1074-5521(95)90084-5>
2. Recent Pat. Anti-Cancer Drug Discov. 2007, 2, 11.
< N. M. F. S. A., Fernandes P. A., Ramos M. J.: https://doi.org/10.2174/157489207779561408>
3. Biochemistry 1992, 31, 9733.
< S. S., Holler T. P., Yu G. X., Bollinger J. M., Jr., Booker S., Johnston M. I., Stubbe J.: https://doi.org/10.1021/bi00155a029>
4. Biochemistry 1992, 31, 9752.
< S. S., Yu G. X., Chalfoun D., Stubbe J.: https://doi.org/10.1021/bi00155a031>
5. Int. J. Radiat. Biol. 1987, 51, 91.
< M. S., Schuchmann H. P., Von Sonntag C.: https://doi.org/10.1080/09553008714550531>
6. J. Chem. Soc., Faraday Trans. 1995, 91, 1923.
< C., Asmus K.-D., Bonifacic M.: https://doi.org/10.1039/ft9959101923>
7. Free Radical Biol. Med. 2001, 31, 98.
< D., Schoneich C.: https://doi.org/10.1016/S0891-5849(01)00559-7>
8. J. Am. Chem. Soc. 1997, 119, 2784.
< R., Giese B.: https://doi.org/10.1021/ja962974q>
9. J. Am. Chem. Soc. 1997, 119, 3637.
< M. J., Guo Z., Wnuk S. F.: https://doi.org/10.1021/ja970171c>
10. J. Am. Chem. Soc. 1999, 121, 1425.
< M. J., Guo Z., Samano M. C., Wnuk S. F.: https://doi.org/10.1021/ja983449p>
11. Biochemistry 1998, 37, 6419.
< W. A., Yu G., Perez L., Sanchez R. J., Stubbe J., Samano V., Robins M. J.: https://doi.org/10.1021/bi9729357>
12. Biochemistry 1996, 35, 8381.
< W. A., Yu G., Silva D. J., Stubbe J., McCarthy J. R., Jarvi E. T., Matthews D. P., Resvick R. J., Wagner E.: https://doi.org/10.1021/bi960190j>
13. J. Am. Chem. Soc. 1998, 120, 3823.
< G. J., van der Donk W. A., Yu G., McCarthy J. R., Jarvi E. T., Matthews D. P., Farrar C., Griffin R. G., Stubbe J.: https://doi.org/10.1021/ja972166e>
14. J. Am. Chem. Soc. 1998, 120, 4252.
< W. A., Gerfen G. J., Stubbe J.: https://doi.org/10.1021/ja9740273>
15. J. Biol. Chem. 1998, 273, 31016.
< A. L., Sahlin M., Sjoberg B.-M.: https://doi.org/10.1074/jbc.273.47.31016>
16. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8979.
< C. C., Bennati M., Obias H. V., Bar G., Griffin R. G., Stubbe J.: https://doi.org/10.1073/pnas.96.16.8979>
17. J. Am. Chem. Soc. 2009, 131, 200.
< H., Artin E., Wnuk S., Lohman G. J. S., Martino D., Griffin R. G., Kacprzak S., Kaupp M., Hoffman B., Bennati M., Stubbe J., Lees N.: https://doi.org/10.1021/ja806693s>
18. J. Am. Chem. Soc. 1999, 121, 5823.
< M. J., Ewing G. J.: https://doi.org/10.1021/ja984399r>
19. Tetrahedron 1999, 55, 5705.
< Z., Samano M. C., Krzykawski J. W., Wnuk S. F., Ewing G. J., Robins M. J.: https://doi.org/10.1016/S0040-4020(99)00238-0>
20. J. Med. Chem. 2000, 43, 1180.
< S. F., Valdez C. A., Khan J., Moutinho P., Robins M. J., Yang X., Borchardt R. T., Balzarini J., De Clercq E.: https://doi.org/10.1021/jm990486y>
21. J. Am. Chem. Soc. 1982, 104, 4976.
< M. D., Cha J. K., Kishi Y.: https://doi.org/10.1021/ja00382a053>
22. J. Org. Chem. 1987, 52, 892.
< J. A., Gray G. R.: https://doi.org/10.1021/jo00381a030>
23. J. Org. Lett. 1999, 1, 635.
< G. J., Robins M.: https://doi.org/10.1021/ol9901117>
24. J. Am. Chem. Soc. 2003, 125, 2042.
< T., Schoneich C.: https://doi.org/10.1021/ja0293599>
25. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
26. Phys. Rev. 1988, B37, 785.
C., Yang W., Parr R. G.:
27. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels R. E., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Salvador P., Dannenberg J. J., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., M. Head-Gordon M., Replogle E. S., Pople J. A.: Gaussian 98, Revision A.11. Gaussian, Inc., Pittsburgh (PA) 2001.
28. J. Am. Chem. Soc. 1998, 120, 8417.
< P. E. M.: https://doi.org/10.1021/ja9736065>
29. J. Comput. Chem. 2004, 25, 2031.
< N. M. F. S. A., Fernandes P. A., Eriksson L. A., Ramos M. J.: https://doi.org/10.1002/jcc.20127>
30. Biol. Chem. 2005, 386, 1007.
< M., Lendzian F., Schmittel M., Zipse H.: https://doi.org/10.1515/BC.2005.117>
31. J. Chem. Phys. 1982, 76, 1910.
< G. D., Bartlett R. J.: https://doi.org/10.1063/1.443164>
32. J. Chem. Soc., Perkin Trans. 2 1986, 1003.
< S., Davies M. J., Gilbert B. C.: https://doi.org/10.1039/p29860001003>
33. J. Phys. Chem. B 2008, 112, 15034.
< T., Casi G., Koppenol W. H., Schöneich C.: https://doi.org/10.1021/jp805133u>