Collect. Czech. Chem. Commun.
2011, 76, 1471-1486
https://doi.org/10.1135/cccc2011090
Published online 2011-12-07 22:18:42
Synthesis, physico-chemical and biological properties of DNA and RNA oligonucleotides containing short alkylamino internucleotide bond
Milena Sobczaka, Katarzyna Kubiakb, Magdalena Janickaa, Malgorzata Sieranta, Barbara Mikolajczyka and Barbara Nawrota,*
a Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
b Institute of Technical Biochemistry, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz, Poland
References
1a. Curr. Top. Med. Chem. 2007, 7, 695.
< P.: https://doi.org/10.2174/156802607780487786>
1b. Expert. Opin. Biol. Ther. 2007, 7, 1021.
< F.: https://doi.org/10.1517/14712598.7.7.1021>
1c. New J. Chem. 2010, 34, 795.
< G.: https://doi.org/10.1039/b9nj00577c>
1d. Guga P.: Chem. Biodiv. 2011;
<https://doi.org/10.1002/cbdv.201100130>
2a. Curr. Opin. Struct. Biol. 1995, 5, 343.
< A., Altman K. H., Wendeborn S.: https://doi.org/10.1016/0959-440X(95)80096-4>
2b. Sanghvi T. S., Cook P. D. in: Carbohydrate Modifications in Antisense Research (T. S. Sanghvi and P. D. Cook, Eds), p. 1. ACS, Washington, DC 1994.
3a. J. Med. Chem. 1969, 12, 154.
< M. P., Coats A. E.: https://doi.org/10.1021/jm00301a041>
3b. J. Chem. Soc. C 1971, 2656.
< R. J.: https://doi.org/10.1039/j39710002656>
4. Biochim. Biophys. Acta 1973, 365.
A. S., MacCoss M., Walker R. T.:
5a. J. Org. Chem. 1977, 42, 703.
< S. M., Kaiser J. K.: https://doi.org/10.1021/jo00424a028>
5b. Bioorg. Med. Chem. Lett. 1994, 4, 435.
< M. K., Just G.: https://doi.org/10.1016/0960-894X(94)80011-1>
5c. J. Chem. Soc., Chem. Commun. 1994, 915.
< K., Gibbs R. A., Metzker M. L., Raghavachari R.: https://doi.org/10.1039/c39940000915>
6a. Tetrahedron Lett. 1992, 33, 2645.
< F., Vasseur J. J., Sanghvi Y. S., Cook P. D.: https://doi.org/10.1016/S0040-4039(00)79047-2>
6b. J. Am. Chem. Soc. 1992, 114, 4006.
< J. J., Debart F., Sanghvi Y. S., Cook P. D.: https://doi.org/10.1021/ja00036a076>
6c. J. Am. Chem. Soc. 1996, 118, 255.
< F., Sanghvi Y. S., Perbost M., Vasseur J. J., Bellon L.: https://doi.org/10.1021/ja9533959>
6d. Bioorg. Med. Chem. Lett. 1994, 4, 395.
< A., Waldner A., Sanghvi Y. S., Lebreton J.: https://doi.org/10.1016/0960-894X(94)80003-0>
6e. Bioor. Med. Chem. Lett. 1993, 3, 2771.
< T. J., Prasad C. V. C., Prouty C. P., Saha A. K., Sardaro M. P., Schairer W. C., Yawman A., Upson D. A., Kruse L. I.: https://doi.org/10.1016/S0960-894X(01)80761-7>
7a. Russ. J. Bioorg. Chem. 2008, 34, 453.
< S. V., Kolganova N. A., Timofeev E. N., Florentev V. L.: https://doi.org/10.1134/S1068162008040092>
7b. J. Am. Chem. Soc. 2003, 125, 12125.
< E., Katkevica D., Bizdena E., Strömberg R.: https://doi.org/10.1021/ja0360900>
8. Angew. Chem. Int. Ed. 2011, 50, 2068.
< Ch., Thomas S., Abbott J., Kennedy S. D., Rozners E.: https://doi.org/10.1002/anie.201007012>
9a. ChemBioChem 2011, 12, 125.
< E., Das S. R.: https://doi.org/10.1002/cbic.201000466>
9b. Chem. Soc. Rev. 2010, 39, 1388.
< A. H., Brown T.: https://doi.org/10.1039/b901971p>
9c. QSAR Comb. Sci. 2007, 26, 1191.
< A., Massi A., Dondoni A.: https://doi.org/10.1002/qsar.200740079>
9d. Org. Lett. 2008, 10, 3729.
< H., Fujino T., Yamazaki N., Guillot-Nieckowski M., Nakamura E.: https://doi.org/10.1021/ol801230k>
9e. Tetrahedron Lett. 2009, 50, 4101.
< T., Yamazaki N., Isobe H.: https://doi.org/10.1016/j.tetlet.2009.04.101>
9f. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15329.
< A. H., Brown T.: https://doi.org/10.1073/pnas.1006447107>
10. Nucleic Acids Res. 1996, 23, 2661.
< J., Schultz R. G., Lloyd D. H., Gryaznov S. M.: https://doi.org/10.1093/nar/23.14.2661>
11. J. Am. Chem. Soc. 1968, 90, 5337.
< G. H., Moffatt J. G.: https://doi.org/10.1021/ja01021a086>
12. Tetrahedron Lett. 2000, 40, 955.
< S., Buděšínský M., Masojídková M., Rosenberg I.: https://doi.org/10.1016/S0040-4039(99)02107-3>
13. Can. J. Chem. 1973, 51, 3799.
< K. K.: https://doi.org/10.1139/v73-569>
14. Science 1985, 230, 281.
< M.: https://doi.org/10.1126/science.3863253>
15. Zon G., Stec W. J. in: Oligonucleotides and Analogues. A Practical Approach (F. Eckstein, Ed.), p. 87. IRL Press Oxford University Press, Oxford 1991.
16. RNA 2007, 8, 1301.
< K., Sochacka E., Kazmierczak-Baranska J., Maszewska M., Janicka M., Nowak G., Nawrot B.: https://doi.org/10.1261/rna.538907>
17. Gen. Eng. News 2005, 25.
A., Antopolsky L., Tennila T., Mackie H., Randolph J.:
18. Chem. Educator 2003, 8, 112.
M. D., Trumpfheller Ch.:
19. Nucleic Acids Res. Suppl. 2001, 1, 19.
M., Tamai K., Ueda M., Uchida T., Yamamuro T., Suzuki T., Saeki T.:
20. Methods Enzymol. 1992, 211, 389.
< M. D., Ratliff R. L., Vaughan M. R.: https://doi.org/10.1016/0076-6879(92)11021-A>
21. Sierant M., Paduszynska A., Kazmierczak-Baranska J., Sorbi S., Bagnoli Al., Sochacka E., Nawrot B.: Int. J. Alzheimers Dis. 2010, ID 809218.
22. J. Biol. Chem. 2003, 278, 31512.
< G., Frigon N., Barbour R., Doan T., Gordon G., McConlogue L., Sinha S., Zeller M.: https://doi.org/10.1074/jbc.M300169200>
23a. New J. Chem. 2003, 27, 1698.
< K., Johansson T., Wojcik M., Janicka M., Nowak M., Stawinski J., Nawrot B.: https://doi.org/10.1039/b305689a>
23b. Oligonucleotides 2006, 16, 68.
< B., Sobczak M., Wojcik M., Janicka M., Nowak M., Cypryk M., Stec W. J.: https://doi.org/10.1089/oli.2006.16.68>
24. FASEB J. 2004, 18, 1571.
H., Zhou W., Christensen M. A., Sun X., Tong Y., Song W.: