Collect. Czech. Chem. Commun.
2011, 76, 311-326
https://doi.org/10.1135/cccc2011030
Published online 2011-03-17 11:03:00
Pd-catalyzed allylic substitution of purin-8-yl(allyl) acetate: Route to (E)-alkenylpurines
Miroslava Tobrmanová, Tomáš Tobrman* and Dalimil Dvořák
Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
References
1. Eur. J. Org. Chem. 2009, 1515.
< Ch., Börjesson K., Dinér P., Elf A., Albinsson B., Wilhelmsson L. M., Grotli M.: https://doi.org/10.1002/ejoc.200900018>
2. Tetrahedron Lett. 2009, 50, 1403.
< Y., Matsumoto K., Takeuchi Y., Bag S. S., Kodate S., Morii T., Saito I.: https://doi.org/10.1016/j.tetlet.2009.01.029>
3. Angew. Chem. Int. Ed. 2010, 49, 3657.
S., Neviani P., Masiero S., Pieraccini S., Spada G. P.:
4. Tetrahedron Lett. 2008, 49, 2479.
< S., Saito I., Maeda M.: https://doi.org/10.1016/j.tetlet.2008.01.124>
5. Chem. Commun. 2010, 46, 6470.
< T. E., Strohmeier J. A., Baumann C. G., Fairlamb I. J. S.: https://doi.org/10.1039/c0cc02043e>
6. Eur. J. Inorg. Chem. 2007, 1752.
< M., Hocek M., Havran L., Forta M., Votruba I., Klepetářová B., Pohl R., Rulíšek L., Zendlová L., Hobza P., Shih I., Mabery E., Mackman R.: https://doi.org/10.1002/ejic.200700030>
7. Org. Biomol. Chem. 2007, 5, 2849.
< M., Pohl R., Klepetářová B., Votruba I., Hocek M.: https://doi.org/10.1039/b709245h>
8a. Org. Lett. 2008, 11, 2287.
< J. E., Rivera J. M.: https://doi.org/10.1021/ol800701j>
8b. J. Am. Chem. Soc. 2009, 131, 3186.
< J. E., Martín-Hidalgo M., Gubala V., Rivera J. M.: https://doi.org/10.1021/ja809612d>
8c. J. Am. Chem. Soc. 2009, 131, 16666.
< J. E., Rivera J. M.: https://doi.org/10.1021/ja9070927>
8d. J. Am. Chem. Soc. 2009, 131, 10403.
< M. d. C., Andújar-de-Sanctis I., García-Arriaga M., Gubala V., Hobley G., Rivera J. M.: https://doi.org/10.1021/ja9040384>
9a. J. Am. Chem. Soc. 1999, 121, 6956.
< A. J., Burrows C. J.: https://doi.org/10.1021/ja991164m>
9b. Bioconjugate Chem. 2005, 16, 178.
< O., Stemmler A. J., Graybosch D. M., Bergenthal I., Burrows C. J.: https://doi.org/10.1021/bc0497564>
9c. Can. J. Chem. 2005, 83, 1261.
< R. A.: https://doi.org/10.1139/v05-121>
10. Bioorg. Med. Chem. Lett. 2001, 11, 1931.
< R., Costanzi S., Lambertucci C., Vittori S., Klotz K.-N., Lorenzen A., Cristalli G.: https://doi.org/10.1016/S0960-894X(01)00347-X>
11. Eur. J. Med. Chem. 2010, 45, 3389.
< N., Mouawad L., Legraverend M.: https://doi.org/10.1016/j.ejmech.2010.04.026>
12. J. Med. Chem. 2005, 48, 710.
< S. A., Domeyer D. M., Scior T. R., Albrecht W., Hauser D. R. J.: https://doi.org/10.1021/jm0408767>
13. J. Med. Chem. 2009, 52, 2880.
< Q., Brown B. S., Liu Y., Rydzewski R. M., Robinson E. D., van Poelje P. D., Reddy M. R., Erion M. D.: https://doi.org/10.1021/jm900078f>
14. J. Am. Chem. Soc. 2007, 129, 15480.
< M. D., Dang Q., Reddy M. R., Kasibhatla S. R., Huang J., Lipscomb W. N., van Poelje P. D.: https://doi.org/10.1021/ja074869u>
15. J. Med. Chem. 2005, 48, 3389.
< B. C., Matelich M. C., Ollis K., Ugarkar B. G.: https://doi.org/10.1021/jm048968j>
16a. Organic process Research&development 2009, 13, 186.
< J. A., Bourassa D. E., Blunt J., Breen D., Busch F. R., Cordi E. M., Damon D. B., Do N., Engtrakul A., Lynch D., McDermott R. E., Mongillo J. A., O’Sullivan M. M., Rose P. R., Vanderplas B. C.: https://doi.org/10.1021/op800255j>
16b. J. Med. Chem. 2001, 44, 170.
< H., Asano O., Hoshino Y., Yoshikawa S., Matsukura M., Kabasawa Y., Niijima J., Kotake Y., Watanabe N., Kawata T., Inoue T., Horizoe T., Yasuda N., Minami H., Nagata K., Murakami M., Nagaoka J., Kobayashi S., Tanaka I., Abe S.: https://doi.org/10.1021/jm990499b>
16c. Med. Chem. Res. 2008, 17, 290.
< S., Saxena A. K.: https://doi.org/10.1007/s00044-007-9064-1>
17. J. Org. Chem. 2007, 72, 4856.
< Q., Xu D., Lim K., Harvey R. G.: https://doi.org/10.1021/jo070518m>
18. Bioorg. Med. Chem. 2001, 9, 2709.
< H., Asano O., Kawata T., Inoue T., Horizoe T., Yasuda N., Nagata K., Murakami M., Nagaoka J., Kobayashi S., Tanaka I., Abe S.: https://doi.org/10.1016/S0968-0896(01)00201-2>
19. Tetrahedron 2008, 64, 7151.
< G., Ehrman E., Grotli M.: https://doi.org/10.1016/j.tet.2008.05.098>
20. J. Org. Chem. 2000, 65, 7825.
< P. L., Magnin G., Mathis G., Burger A., Biellmann J.-F.: https://doi.org/10.1021/jo000841o>
21. ChemMedChem 2009, 4, 1010.
< R., Ben D. D., Lambertucci C., Marucci G., Mishra R. C., Ramadori A. T., Klotz K.-N., Trincavelli M. L., Martini C., Cristalli G.: https://doi.org/10.1002/cmdc.200800434>
22. Nucleosides Nucleotides Nucleic Acids 2004, 23, 501.
Y.-h., Landesman M. B., Amador R., Rong F., An H., Hong Z., Girardet J.-L.:
23. Org. Biomol. Chem. 2007, 5, 2070.
< M., Bjornstad V., Langli G., Romming C., Klaveness J., Taskén K., Undheim K.: https://doi.org/10.1039/b702403g>
24a. Synthesis 2009, 1309.
Z., Pohl R., Hocek M.:
24b. J. Org. Chem. 2003, 68, 6767.
< E. C., Daft J. R., Johnson E. M., Gannett P. M., Shaughnessy K. H.: https://doi.org/10.1021/jo034289p>
24c. J. Am. Chem. Soc. 2011, 133, 42.
< A., Beach D. G., Baker M., Gavryelski W., Manderville R. A.: https://doi.org/10.1021/ja106158b>
24d. Synthesis 2004, 2799.
N., Katashima T., Yamamoto Y.:
25. Adv. Synth. Catal. 2008, 350, 602.
< P., Zhang L., Lakshman M. K.: https://doi.org/10.1002/adsc.200700418>
26a. Org. Lett. 2006, 8, 5389.
< I., Pohl R., Klepetářová B., Hocek M.: https://doi.org/10.1021/ol062324j>
26b. Tetrahedron 2008, 64, 6125.
< T. E., Firth A. G., Wilson K., Darley K., Baumann C. G., Fairlamb I. J. S.: https://doi.org/10.1016/j.tet.2008.01.062>
26c. Tetrahedron Lett. 2008, 49, 7279.
< S., Messaoudi S., Peyrat J.-F., Brion J.-D. Alami M.: https://doi.org/10.1016/j.tetlet.2008.10.021>
26d. J. Org. Chem. 2009, 74, 5810.
< T. E., Baumann C. G., Thatcher R. J., Ornellas S. D., Whitwood A. C., Fairlamb I. J. S.: https://doi.org/10.1021/jo9012282>
26e. J. Org. Chem. 2010, 75, 2302.
< I., Pohl R., Klepetářová B., Hocek M.: https://doi.org/10.1021/jo100111t>
26f. Chem. Commun. 2007, 4729.
< I., Pohl R., Hocek M.: https://doi.org/10.1039/b714253f>
26g. Chem. Eur. J. 2010, 16, 11836.
< B., Qin X., Li K., Li X., Guo Q., Lan J., You J.: https://doi.org/10.1002/chem.201001338>
26h. Org. Biomol. Chem. 2009, 7, 4271.
< S., Messaoudi S., Brion J.-D., Alami M.: https://doi.org/10.1039/b912033e>
27. Eur. J. Org. Chem. 2010, 6097.
< S., Messaoudi S., Brion J.-D., Alami M.: https://doi.org/10.1002/ejoc.201000959>
28. Collect. Czech. Chem. Commun. 2010, 75, 313.
< M., Křováček M., Tobrman T., Dvořák D.: https://doi.org/10.1135/cccc2009563>
29. Org. Lett. 2006, 8, 1291.
< T., Dvořák D.: https://doi.org/10.1021/ol053013w>
30. Eur. J. Org. Chem. 2008, 2923.
< T., Dvořák D.: https://doi.org/10.1002/ejoc.200800091>
31. J. Org. Chem. 2001, 66, 4814.
< D., Zhang C.: https://doi.org/10.1021/jo010122p>
32. Eur. J. Org. Chem. 2008, 2167.
< T., Štěpnička P., Císařová I., Dvořák D.: https://doi.org/10.1002/ejoc.200800017>
33. Eur. J. Med. Chem. 2004, 39, 433.
< B. Y., Ahn J. B., Lee H. W., Kang S. K., Lee J. H., Shin J. S., Ahn S. K., Hong C. I., Yoon S. S.: https://doi.org/10.1016/j.ejmech.2004.03.001>