Collect. Czech. Chem. Commun.
2011, 76, 327-341
https://doi.org/10.1135/cccc2010151
Published online 2011-03-23 23:02:39
Potential energy curve of N2 revisited
Vladimír Špirkoa,*, Xiangzhu Lib and Josef Paldusb
a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Department of Applied Mathematics, University of Waterloo, Waterloo, ON Canada N2L 3G1
References
1. Science 2009, 324, 1548.
< J. M., Bondybey V. E., Heaven M. C.: https://doi.org/10.1126/science.1174326>
2. J. Chem. Phys. 2008, 129, 174101.
< X., Paldus J.: https://doi.org/10.1063/1.2999560>
3. McWeeny R.: Methods of Molecular Quantum Mechanics, 2nd ed. Academic, London 1989.
4. Paldus J., Li X. in: Correlation and Localization (P. R. Surján, Ed.), p. 1. Springer, Berlin 1999.
5. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, P. F. Bernath and R. McWeeny, Eds), Vol. 2: Molecular Electronic Structure, p. 272. Wiley, Chichester 2003.
6. Shavitt I., Bartlett R. J.: Many-Body Methods in Chemistry and Physics. Cambridge University Press, Cambridge 2009.
7. Shavitt I. in: Methods of Electronic Structure Theory (H. F. Schaefer III, Ed.), p. 189. Plenum, New York 1977.
8. Adv. Chem. Phys. 1987, 67, 1.
< P. J., Peyerimhoff S. D.: https://doi.org/10.1002/9780470142936.ch1>
9. Int. J. Quantum Chem. 1974, 8, 61.
< S. R., Davidson E. R.: https://doi.org/10.1002/qua.560080106>
10. Chem. Phys. Lett. 1981, 72, 278.
< P. J., Peyerimhoff S. D., Buenker R. J.: https://doi.org/10.1016/0009-2614(80)80291-0>
11. Chem. Phys. Lett. 1996, 263, 351.
< L.: https://doi.org/10.1016/S0009-2614(96)01218-3>
12. Chem. Phys. Lett. 1999, 300, 53.
< L., Grabowski I.: https://doi.org/10.1016/S0009-2614(98)01332-3>
13. Chem. Phys. Lett. 2000, 316, 501.
< L., Nooijen M.: https://doi.org/10.1016/S0009-2614(99)01209-9>
14. Adv. Chem. Phys. 1999, 110, 1.
< J., Li X.: https://doi.org/10.1002/9780470141694.ch1>
15. Rev. Mod. Phys. 2007, 79, 291.
< R. J., Musiał M.: https://doi.org/10.1103/RevModPhys.79.291>
16. J. Chem. Phys. 2006, 125, 154113.
< F. A., Allen W. D., Schaefer H. F., III: https://doi.org/10.1063/1.2357923>
17. J. Chem. Phys. 2009, 131, 114103.
< X., Paldus J.: https://doi.org/10.1063/1.3225203>
18. Chem. Phys. Lett. 1998, 283, 253.
< R. J.: https://doi.org/10.1016/S0009-2614(97)01392-4>
19. J. Chem. Phys. 2008, 129, 054104.
< X., Paldus J.: https://doi.org/10.1063/1.2961033>
20. J. Chem. Phys. 1997, 107, 6257.
< X., Paldus J.: https://doi.org/10.1063/1.474289>
21. J. Chem. Phys. 1997, 107, 90.
< X., Peris G., Planelles J., Rajadell F., Paldus J.: https://doi.org/10.1063/1.474355>
22. J. Chem. Phys. 1998, 108, 637.
< X., Paldus J.: https://doi.org/10.1063/1.475425>
23. Theor. Chim. Acta 1994, 89, 13.
< J., Planelles J.: https://doi.org/10.1007/BF01167279>
24. J. Chem. Phys. 2006, 124, 174101.
< X., Paldus J.: https://doi.org/10.1063/1.2194543>
25. J. Chem. Phys. 2006, 125, 164107.
< X., Paldus J.: https://doi.org/10.1063/1.2361295>
26. Collect. Czech. Chem. Commun. 2007, 72, 100.
< J., Li X.: https://doi.org/10.1135/cccc20070100>
27. J. Chem. Phys. 2006, 125, 164310.
< R. J., Huang Y., Jary C.: https://doi.org/10.1063/1.2354502>
28. J. Chem. Phys. 1999, 110, 8338.
< M., Hutson J. M.: https://doi.org/10.1063/1.478744>
29. J. Chem. Phys. 2001, 115, 899.
< J., Lucchese R. R., Bewan J. W.: https://doi.org/10.1063/1.1379337>
30. Collect. Czech. Chem. Commun. 1962, 28, 1449.
< F., Plíva J.: https://doi.org/10.1135/cccc19631449>
31. Adv. At. Mol. Phys. 1983, 19, 265.
< F.: https://doi.org/10.1016/S0065-2199(08)60255-9>
32. Phys. Rev. A 1993, 48, 1319.
< F., Brandt B. A., Špirko V., Bludský O.: https://doi.org/10.1103/PhysRevA.48.1319>
33. J. Mol. Spectrosc. 1995, 169, 555.
< O., Juřek M., Špirko V., Brandt B. A., Jenč J.: https://doi.org/10.1006/jmsp.1995.1046>
34. Science 2009, 326, 1382.
< K., Špirko V., Szalewicz K.: https://doi.org/10.1126/science.1181017>
35. J. Chem. Phys. 2007, 127, 121101.
< P., Špirko V.: https://doi.org/10.1063/1.2790004>
36. J. Chem. Phys. 2000, 113, 9966.
< X., Paldus J.: https://doi.org/10.1063/1.1323260>
37. Collect. Czech. Chem. Commun. 2005, 70, 731.
< V.: https://doi.org/10.1135/cccc20050731>
38. Chem. Phys. 2008, 348, 187.
< M., Guerra V., Loureiro J., Sá P. A.: https://doi.org/10.1016/j.chemphys.2008.02.048>
39. J. Chem. Phys. 1997, 107, 914.
< A. R., Aziz R. A.: https://doi.org/10.1063/1.474444>
40. J. Chem. Phys. 2005, 122, 184310.
< J., Poirier B., Gellene G. I.: https://doi.org/10.1063/1.1891685>
41. J. Chem. Phys. 2008, 128, 144119.
< X., Paldus J.: https://doi.org/10.1063/1.2868768>
42. J. Chem. Phys. 2008, 128, 144118.
< X., Paldus J.: https://doi.org/10.1063/1.2868758>
43. Chem. Phys. Lett. 1998, 286, 145.
< X., Paldus J.: https://doi.org/10.1016/S0009-2614(97)01132-9>
44. J. Chem. Phys. 2010, 132, 074103.
< S., Mukherjee D., Kállay M.: https://doi.org/10.1063/1.3310288>
45. J. Chem. Phys. 2009, 130, 204101.
< L., Ruedenberg K.: https://doi.org/10.1063/1.3139114>
46. J. Chem. Phys. 2010, 132, 074307.
< L., Matsunaga N., Ruedenberg K.: https://doi.org/10.1063/1.3298376>