Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2011, 76, 567-583
https://doi.org/10.1135/cccc2011018
Published online 2011-04-29 13:19:10

On the limited precision of transfer of molecular optical activity tensors

Shigeki Yamamoto and Petr Bouř*

Molecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., 166 10 Prague 6, Czech Republic

Crossref Cited-by Linking

  • Krupová Monika, Kessler Jiří, Bouř Petr: Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. ChemPlusChem 2020, 85, 561. <https://doi.org/10.1002/cplu.202000014>
  • Keiderling Timothy A.: Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem. Rev. 2020, 120, 3381. <https://doi.org/10.1021/acs.chemrev.9b00636>
  • Průša Jiří, Bouř Petr: Transition dipole coupling modeling of optical activity enhancements in macromolecular protein systems. Chirality 2018, 30, 55. <https://doi.org/10.1002/chir.22778>
  • Kessler Jiří, Yamamoto Shigeki, Bouř Petr: Establishing the link between fibril formation and Raman optical activity spectra of insulin. Phys. Chem. Chem. Phys. 2017, 19, 13614. <https://doi.org/10.1039/C7CP01556A>
  • Krausbeck Florian, Autschbach Jochen, Reiher Markus: Calculated Resonance Vibrational Raman Optical Activity Spectra of Naproxen and Ibuprofen. J. Phys. Chem. A 2016, 120, 9740. <https://doi.org/10.1021/acs.jpca.6b09975>
  • Kessler Jiří, Bouř Petr: Transfer of Frequency-Dependent Polarizabilities: A Tool To Simulate Absorption and Circular Dichroism Molecular Spectra. J. Chem. Theory Comput. 2015, 11, 2210. <https://doi.org/10.1021/acs.jctc.5b00136>
  • Jose K. V. Jovan, Beckett Daniel, Raghavachari Krishnan: Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach. J. Chem. Theory Comput. 2015, 11, 4238. <https://doi.org/10.1021/acs.jctc.5b00647>
  • Kessler Jiří, Kapitán Josef, Bouř Petr: First-Principles Predictions of Vibrational Raman Optical Activity of Globular Proteins. J. Phys. Chem. Lett. 2015, 6, 3314. <https://doi.org/10.1021/acs.jpclett.5b01500>
  • Thorvaldsen Andreas J., Gao Bin, Ruud Kenneth, Fedorovsky Maxim, Zuber Gérard, Hug Werner: Efficient Calculation of ROA Tensors with Analytical Gradients and Fragmentation. Chirality 2012, 24, 1018. <https://doi.org/10.1002/chir.22090>
  • Dračínský Martin, Bouř Petr: Vibrational averaging of the chemical shift in crystalline α‐glycine. J Comput Chem 2012, 33, 1080. <https://doi.org/10.1002/jcc.22940>
  • Weymuth Thomas, Haag Moritz P., Kiewisch Karin, Luber Sandra, Schenk Stephan, Jacob Christoph R., Herrmann Carmen, Neugebauer Johannes, Reiher Markus: MOVIPAC: Vibrational spectroscopy with a robust meta‐program for massively parallel standard and inverse calculations. J Comput Chem 2012, 33, 2186. <https://doi.org/10.1002/jcc.23036>
  • Yamamoto Shigeki: Conformational analyses of peptides and proteins by vibrational Raman optical activity. Anal Bioanal Chem 2012, 403, 2203. <https://doi.org/10.1007/s00216-012-5891-0>
  • Yamamoto Shigeki, Kaminský Jakub, Bouř Petr: Structure and Vibrational Motion of Insulin from Raman Optical Activity Spectra. Anal. Chem. 2012, 84, 2440. <https://doi.org/10.1021/ac2032436>
  • Yamamoto Shigeki, Li Xiaojun, Ruud Kenneth, Bouř Petr: Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy. J. Chem. Theory Comput. 2012, 8, 977. <https://doi.org/10.1021/ct200714h>
  • Novák Vít, Šebestík Jaroslav, Bouř Petr: Theoretical Modeling of the Surface-Enhanced Raman Optical Activity. J. Chem. Theory Comput. 2012, 8, 1714. <https://doi.org/10.1021/ct300150g>
  • Simmen Benjamin, Weymuth Thomas, Reiher Markus: How Many Chiral Centers Can Raman Optical Activity Spectroscopy Distinguish in a Molecule?. J. Phys. Chem. A 2012, 116, 5410. <https://doi.org/10.1021/jp303428f>
  • Profant Václav, Baumruk Vladimír, Li Xiaojun, Šafařík Martin, Bouř Petr: Tracking of the Polyproline Folding by Density Functional Computations and Raman Optical Activity Spectra. J. Phys. Chem. B 2011, 115, 15079. <https://doi.org/10.1021/jp207706p>