Collect. Czech. Chem. Commun. 2011, 76, 619-629
https://doi.org/10.1135/cccc2011054
Published online 2011-04-29 13:20:28

Theoretical study of metallasilatranes; Bonding nature and prediction of new metallasilatrane

Shigeyoshi Sakaki*, Daisuke Kawai and Shinya Tsukamoto

Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan

References

1. Gualco P., Mercy M., Ladeira S., Coppel Y., Maron L., Amgoune A., Bourisson D.: Eur. J. Chem. 2010, 16, 10808. <https://doi.org/10.1002/chem.201001281>
2a. Toyota K., Yamamoto Y., Akiba K.: Chem. Lett. 1999, 783. <https://doi.org/10.1246/cl.1999.783>
2b. Toyota K., Yamamoto Y., Akiba K.: Organometallics 2000, 19, 5134. <https://doi.org/10.1021/om000791d>
3a. Toyota K., Wakisaka Y., Yamamoto Y., Akiba K.: Organometallics 2000, 19, 5122. <https://doi.org/10.1021/om000790l>
3b. Yamamoto Y., Toyota K., Akiba K.: Heteroat. Chem. 2000, 11, 42. <https://doi.org/10.1002/(SICI)1098-1071(2000)11:1<42::AID-HC7>3.0.CO;2-1>
4. Toyota K., Yamamoto Y., Akiba K.: J. Organomet. Chem. 1999, 586, 171. <https://doi.org/10.1016/S0022-328X(99)00259-4>
5. Ray M., Nakao Y., Sato H., Sakaba H., Sakaki S.: J. Am. Chem. Soc. 2006, 128, 11927. <https://doi.org/10.1021/ja0625374>
6. Wagler J., Brendler E.: Angew. Chem. Int. Ed. 2010, 49, 624.
7. Truflandier L. A., Brendler E., Wagler J., Autschbach J.: Angew. Chem. Int. Ed. 2011, 50, 255. <https://doi.org/10.1002/anie.201005431>
8. Though the binding energy is one of important molecular properties, we did not calculate it here because it is not possible to evaluate the Pt–Si bond energy by removing the Pt–Cl moiety from platinum-silatrane; note that removing the Pt–Cl moiety from platinum-silatrane leads to both of one Pt–Si bond breaking and four Pt–S bond breakings.
9a. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
9b. Becke A. D.: Phys. Rev. A 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
9c. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C.: Phys. Rev. B 1992, 46, 6671. <https://doi.org/10.1103/PhysRevB.46.6671>
9d. Perdew J. P., Burke K., Wang Y.: Phys. Rev. B 1996, 54, 16533. <https://doi.org/10.1103/PhysRevB.54.16533>
10. Iikura H., Tsuneda T., Yanai T., Hirao K.: J. Chem. Phys. 2001, 115, 3540. <https://doi.org/10.1063/1.1383587>
11. Lee C., Yang W., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
12a. Zhao Y., Truhlar D. G.: J. Phys. Chem. A 2006, 110, 5121. <https://doi.org/10.1021/jp060231d>
12b. Zhao Y., Truhlar D. G.: J. Phys. Chem. A 2006, 110, 13126. <https://doi.org/10.1021/jp066479k>
12c. Zhao Y., Truhlar D. G.: Theor. Chem. Acc. 2008, 120, 215. <https://doi.org/10.1007/s00214-007-0310-x>
13. Hay P. J., Wadt W. R.: J. Chem. Phys. 1985, 82, 299. <https://doi.org/10.1063/1.448975>
14. Ehlers A. W., Böhme M., Dapprich S., Gobbi A., Höllwarth A., Jonas V., Köhler K. F., Stegmann R., Veldkamp A., Frenking G.: Chem. Phys. Lett. 1993, 208, 111. <https://doi.org/10.1016/0009-2614(93)80086-5>
15. Couty M., Hall M. B.: J. Comput. Chem. 1996, 17, 1359. <https://doi.org/10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L>
16. Figgen D., Peterson K. A., Dolg M., Stoll H.: J. Chem. Phys. 2009, 103, 164108. <https://doi.org/10.1063/1.3119665>
17a. Hehre W. J., Ditchfield R., Pople J. A.: J. Chem. Phys. 1972, 56, 2257. <https://doi.org/10.1063/1.1677527>
17b. Francl M. M., Petro W. J., Hehre W. J., Binkley J. S., Gordon M. S., DeFrees D. J., Pople J. A.: J. Chem. Phys. 1982, 77, 3654. <https://doi.org/10.1063/1.444267>
18a. McLean A. D., Chandler G. S.: J. Chem. Phys. 1980, 72, 5639. <https://doi.org/10.1063/1.438980>
18b. Frisch M. J., Pople J. A., Binkley J. S.: J. Chem. Phys. 1984, 80, 3265. <https://doi.org/10.1063/1.447079>
19. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr., J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.: Gaussian 09. Gaussian, Inc., Wallingford (CT) 2009.
20. Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Windus S., Su T. L., Dupuis M., Montgomery J. A., Jr.: J. Comput. Chem. 1993, 14, 1347. <https://doi.org/10.1002/jcc.540141112>
21a. Sakaki S., Dedieu A.: Inorg. Chem. 1987, 26, 3278. <https://doi.org/10.1021/ic00267a013>
21b. Sakaki S., Aizawa T., Koga N., Morokuma K., Ohkubo K.: Inorg. Chem. 1989, 28, 103. <https://doi.org/10.1021/ic00300a024>
21c. Sakaki S.: J. Am. Chem. Soc. 1992, 114, 2055. <https://doi.org/10.1021/ja00032a019>
21d. Sakaki S.: J. Am. Chem. Soc. 1990, 112, 7813. <https://doi.org/10.1021/ja00177a062>