Collect. Czech. Chem. Commun. 2011, 76, 713-742
https://doi.org/10.1135/cccc2011048
Published online 2011-05-04 06:17:53

Parallelized implementation of the CCSD(T) method in MOLCAS using optimized virtual orbitals space and Cholesky decomposed two-electron integrals

Michal Pitoňáka,b,*, Francesco Aquilantec, Pavel Hobzab,d, Pavel Neográdya, Jozef Nogae,f and Miroslav Urbana,g

a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, SK-842 15 Bratislava, Slovak Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
c Department of Physical and Analytical Chemistry, Quantum Chemistry, Uppsala University, P.O. Box 518, SE-75120 Uppsala, Sweden
d Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
e Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovak Republic
f Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovak Republic
g Slovak University of Technology in Bratislava, Faculty of Materials, Science and Technology in Trnava, Institute of Materials, J. Bottu 24, SK-917 24 Trnava, Slovak Republic

References

1. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
2. Neogrády P., Szalay P. G., Kraemer W. P., Urban M.: Collect. Czech. Chem. Commun. 2005, 70, 951. <https://doi.org/10.1135/cccc20050951>
3. Schütz M., Hetzer G., Werner H.-J.: J. Chem. Phys. 1999, 111, 5691. <https://doi.org/10.1063/1.479957>
4. Schütz M.: J. Chem. Phys. 2000, 113, 9986. <https://doi.org/10.1063/1.1323265>
5. Schütz M., Werner H.-J.: J. Chem. Phys. 2001, 114, 661. <https://doi.org/10.1063/1.1330207>
6. Subotnik J. E., Head-Gordon M.: J. Chem. Phys. 2005, 123, 064108. <https://doi.org/10.1063/1.2000252>
7. Auer A. A., Nooijen M.: J. Chem. Phys. 2006, 125, 024104. <https://doi.org/10.1063/1.2209685>
8. Christiansen O., Manninen P., Jørgensen P., Olsen J.: J. Chem. Phys. 2006, 124, 084103. <https://doi.org/10.1063/1.2173249>
9. Flocke N., Bartlett R. J.: J. Chem. Phys. 2004, 121, 10935. <https://doi.org/10.1063/1.1811606>
10. Noga J., Kutzelnigg W., Klopper W.: Chem. Phys. Lett. 1992, 199, 597. <https://doi.org/10.1016/0009-2614(92)87034-M>
11. Noga J., Kutzelnigg W.: J. Chem. Phys. 1994, 101, 7738. <https://doi.org/10.1063/1.468266>
12. Ten-no S.: Chem. Phys. Lett. 2004, 398, 56. <https://doi.org/10.1016/j.cplett.2004.09.041>
13. Tew D. P., Hättig C., Bachorz R. A., Klopper W. in: Recent Progress in Coupled Cluster Methods (P. Čársky, J. Paldus and J. Pittner, Eds), p. 535. Springer, New York 2010.
14. Werner H.-J., Adler T. B., Knizia G., Manby F. R. in: Recent Progress in Coupled Cluster Methods (P. Čársky, J. Paldus and J. Pittner, Eds), p. 573. Springer, New York 2010.
15. Noga J., Kedžuch S., Šimunek J., Ten-no S.: J. Chem. Phys. 2008, 128, 174103. <https://doi.org/10.1063/1.2907741>
16. Janowski T., Ford A. R., Pulay P.: J. Chem. Theory Comput. 2007, 3, 1368. <https://doi.org/10.1021/ct700048u>
17. Olson R. M., Bentz J. L., Kendall R. A., Schmidt M. W., Gordon M. S.: J. Chem. Theory Comput. 2007, 3, 1312. <https://doi.org/10.1021/ct600366k>
18. Valiev M., Bylaska E. J., Govind N., Kowalski K., Straatsma T. P., van Dam H. J. J., Wang D., Nieplocha J., Apra E., Windus T. L., de Jong W. A.: Comput. Phys. Commun. 2010, 181, 1477. <https://doi.org/10.1016/j.cpc.2010.04.018>
19. Lotrich V., Flocke N., Ponton M., Yau A. D., Perera A., Deumens E., Bartlett R. J.: J. Chem. Phys. 2008, 128, 194104. <https://doi.org/10.1063/1.2920482>
20. Pitoňák M., Neogrády P., Řezáč J., Jurečka P., Urban M., Hobza P.: J. Chem. Theory Comput. 2008, 4, 1829. <https://doi.org/10.1021/ct800229h>
21. Pitoňák M., Riley K. E., Neogrády P., Hobza P.: Chem. Phys. Chem. 2008, 9, 1636.
22. Pitoňák M., Janowski T., Neogrády P., Pulay P., Hobza P.: J. Chem. Theory Comput. 2009, 5, 1761. <https://doi.org/10.1021/ct900126q>
23. Pitoňák M., Neogrády P., Hobza P.: Phys. Chem. Chem. Phys. 2010, 12, 1369. <https://doi.org/10.1039/b919354e>
24. Aquilante F., Vico L. D., Ferre N., Malmqvist P.-Å., Neogrády P., Pedersen T., Pitoňák M., Reiner M., Roos B. O., Serrano-Andrés L., Urban M., Veryazov V., Lindh R.: J. Comput. Chem. 2010, 31, 224. <https://doi.org/10.1002/jcc.21318>
25. Rendell A. P., Lee T. J.: J. Chem. Phys. 1994, 101, 400. <https://doi.org/10.1063/1.468148>
26. Neogrády P., Pitoňák M., Urban M.: Mol. Phys. 2005, 103, 2141. <https://doi.org/10.1080/00268970500096251>
27. Taube A. G., Bartlett R. J.: Collect. Czech. Chem. Commun. 2005, 70, 837. <https://doi.org/10.1135/cccc20050837>
28. Taube A. G., Bartlett R. J.: J. Chem. Phys. 2008, 128, 164101. <https://doi.org/10.1063/1.2902285>
29. Pitoňák M., Neogrády P., Kellö V., Urban M.: Mol. Phys. 2006, 104, 2277. <https://doi.org/10.1080/00268970600662390>
30. Pitoňák M., Holka F., Neogrády P., Urban M.: J. Mol. Struct. 2006, 768, 79.
31. Dunning T. H., Peterson K. A.: J. Chem. Phys. 2000, 113, 7799. <https://doi.org/10.1063/1.1316041>
32. Scuseria G. E., Janssen C. L., Schaefer III H. F.: J. Chem. Phys. 1998, 89, 7382. <https://doi.org/10.1063/1.455269>
33. Hampel C., Peterson K. A., Werner H.-J.: Chem. Phys. Lett. 1992, 190, 1. <https://doi.org/10.1016/0009-2614(92)86093-W>
34. Koch H., Christiansen O., Kobayashi R., Jørgensen P., Helgaker T.: Chem. Phys. Lett. 1994, 228, 233. <https://doi.org/10.1016/0009-2614(94)00898-1>
35. Klopper W., Noga J.: J. Chem. Phys. 1995, 103, 6127. <https://doi.org/10.1063/1.470440>
36. Stanton J. F., et al.: ACES II Program, A Product of the Quantum Theory Project. University of Florida, 1993.
37. Werner H.-J., et al.: MOLPRO, a Package of ab initio programs, version 2009.2. 2009. http://www.molpro.net.
38. Pedersen T. B., Aquilante F., Lindh R.: Theor. Chem. Acc. 2009, 124, 1. <https://doi.org/10.1007/s00214-009-0608-y>
39. Feyereisen M., Fitzgerald G., Komornicki A.: Chem. Phys. Lett. 1993, 208, 359. <https://doi.org/10.1016/0009-2614(93)87156-W>
40. Beebe N. H. F., Linderberg J.: Int. J. Quantum Chem. 1977, 7, 683. <https://doi.org/10.1002/qua.560120408>
41. Koch H., de Meras A. S., Pedersen T. B.: J. Chem. Phys. 2003, 118, 9481. <https://doi.org/10.1063/1.1578621>
42. Boström J., Delcey M. G., Aquilante F., Serrano-Andres L., Pedersen T. B., Lindh R.: J. Chem. Theory Comput. 2010, 6, 747. <https://doi.org/10.1021/ct900612k>
43. Aquilante F., Lindh R., Pedersen T. B.: J. Chem. Phys. 2007, 127, 114107. <https://doi.org/10.1063/1.2777146>
44. Aquilante F., Lindh R., Pedersen T. B.: J. Chem. Phys. 2008, 129.
45. Aquilante F.: Ph.D. Thesis, Chap. 5. Lund University, Lund 2007. ISBN 978-91-7422-169-5.
46. Nieplocha J., Palmer B., Tipparaju V., Krishnan M., Trease H., Apra E.: Int. J. High Perfom. Comp. Appl. 2006, 20, 203. <https://doi.org/10.1177/1094342006064503>
47. Noga J., Valiron P.: Mol. Phys. 2005, 103, 2123. <https://doi.org/10.1080/00268970500131140>
48. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 404. <https://doi.org/10.1063/1.449067>
49. Watts J. D., Gauss J., Bartlett R. J.: J. Chem. Phys. 1993, 98, 8718. <https://doi.org/10.1063/1.464480>
50. Noga J., Klopper W., Helgaker T., Valiron P.: 2003. A web repository is accessible on http://www-laog.obs.ujf-grenoble.fr/~valiron/ccr12/.
51. Adamowicz L., Bartlett R. J.: J. Chem. Phys. 1987, 86, 6314. <https://doi.org/10.1063/1.452468>
52. Adamowicz L., Bartlett R. J., Sadlej A. J.: J. Chem. Phys. 1988, 88, 5749. <https://doi.org/10.1063/1.454721>
53. Hobza P., Havlas Z.: Chem. Rev. 2000, 100, 4253. <https://doi.org/10.1021/cr990050q>
54. Rulíšek L., Havlas Z.: J. Phys. Chem. 1999, 103, 1634.
55. Fanfrlík J., Lepšík M., Horinek D., Havlas Z., Hobza P.: ChemPhysChem 2006, 7, 1100. <https://doi.org/10.1002/cphc.200500648>